
- •5.Общая схема организации растительной клетки.
- •6.Методы исследования.
- •7.Основные закономерности поглощения воды клеткой.(Ксения Копылова)
- •8.Осмос и его законы.
- •9.Растительная клетка - осмотическая система.
- •10.Водный режим растений.(Дарья Тимофеева)
- •12.Поглощение воды растением
- •13.Транспорт воды по растению.
- •14.Механизмы передвижения воды по растению
- •12. Валовой химический состав пахотных горизонтов почв (% на прокаленную навеску) в сравнении с зольным составом растений (% на золу)
- •18.Классификации элементов, необходимых для растений.
- •19.Механизмы поглощения и транспорта минеральных элементов
- •25.Фосфорилирование на уровне субстрата и фосфорилирование в дыхательной цепи.
- •26.Мембраны как структурная основа биоэнергетических процессов.
- •27.Электро-химический потенциал – движущая сила фосфорилирования.
- •28.Регуляция электронного транспорта и фосфорилирования
- •29.Роль дыхания в продукционном процессе.
- •30.Составляющие дыхания.
- •32.Структурная организация фотосинтетического аппарата. (Быкова Татьяна)
- •33.Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма.
- •34.Фотосинтетические пигменты
- •35.Хлорофилл-белковые комплексы. (Климова к)
- •36.Первичные процессы фотосинтеза. Поглощение света и передача энергии возбуждения
- •37.Регуляция электрон-транспортной цепи фотосинтеза.Основные функциональные комплексы этц
- •38.Темновая стадия фотосинтеза. (Татьяна Евсеева)
- •39.Экология фотосинтез
- •41. Активный транспорт ионов. Механизм поглощения ионов растениями
- •45. Каротиноиды. Химическое строение и функции.
- •46. Кинетика процессов поглощения ионов. Участие мембранных структур клетки в поглощении и компартментации ионов.
- •47. Корень как орган поглощения минеральных элементов и воды.(Дарья Тимофеева)
- •48. Корневая система как орган потребления воды. Корневое давление: значение, механизм и методы определения.
- •52. Основные соединения серы в растении, их метаболизм и функции.
- •53. Основные соединения фосфора в растении, их метаболизм и функции.
- •54. Особенности водного обмена различных групп растений (ксерофиты, мезофиты, гидрофиты). Механизмы адаптации растений к дефициту влаги.
- •55. Поступление, метаболизм и функции калия в растениях.
- •56. Поступление, метаболизм и функции кальция в растениях. (Тимофеева Даша)
- •57. Почва как источник минеральных элементов для растений.
- •59. Реакция растений на высокое содержание солей в почве.
- •60. Ростовые и тургорные движения растений .
- •61. Транспирация, ее формы и физиологическое значение. Количественные показатели
- •62. Цикл Кребса. Механизмы регуляции цикла.
- •63. Цикл Хэтча-Слэка-Карпилова
- •64. Электрон-транспортная цепь митохондрий
- •65. Кислотный метаболизм Толстянковых (сам-фотосинтез)
- •66. Гликолатный цикл
- •67.Фоторазложение воды.
45. Каротиноиды. Химическое строение и функции.
Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пигменты, относящиеся к группе каротиноидов. Каротиноиды — это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента — каротин (оранжевый) и ксантофилл (желтый). Каротин состоит из 8 изопреновых остатков. При разрыве углеродной цепочки пополам и образовании на конце спиртовой группы каротин превращается в 2 молекулы витамина А. Обращает на себя внимание сходство в структуре фитоласпирта, входящего в состав хлорофилла, и углеродной цепочки, соединяющей пионовые кольца каротина. Предполагается, что фитол возникает как продукт гидрирования этой части молекулы каротиноидов. Поглощение света каротиноидами, их окраска, а также способность к окислительно-восстановительным реакциям обусловлены наличием конъюгированных двойных связей, b каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплексов с белками. Физиологическая роль каротиноидов. Уже тот факт, что каротиноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие в процессе фотосинтеза. Однако не отмечено ни одного случая, когда в отсутствие хлорофилла этот процесс осуществляется. В настоящее время установлено, что каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются. Физиологическая роль каротиноидов не ограничивается их участием в передаче энергии на молекулы хлорофилла. По данным русского исследователя Д.И. Сапожникова, на свету происходит взаимопревращение ксантофиллов (виолаксантин превращается в зеаксантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе разложения воды и выделения кислорода при фотосинтезе.
Имеются данные, что каротиноиды выполняют защитную функцию, предохраняя различные органические вещества, в первую очередь молекулы хлорофилла, от разрушения на свету в процессе фотоокисления. Опыты, проведенные на мутантах кукурузы и подсолнечника, показали, что они содержат протохлорофиллид (темновой предшественник хлорофилла), который на свету переходит в хлорофилл а, но разрушается. Последнее связано с отсутствием способности исследованных мутантов к образованию каротиноидов. Ряд исследователей указывают, что каротиноиды играют определенную роль в половом процессе у растений. Известно, что в период цветения высших растений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а также в лепестках цветков. По мнению П. М. Жуковского, микроспорогенез тесно связан с метаболизмом каротиноидов. Незрелые пыльцевые зерна имеют белую окраску, а созревшая пыльца — желто-оранжевую. В половых клетках водорослей наблюдается дифференцированное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлорофилл. Высказывается мнение, что именно каротин обусловливает подвижность сперматозоидов. По данным В. Мевиуса, материнские клетки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут передвигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротиноидом — кроцетином.
Образование каротиноидов. Синтез каротиноидов не требует света. При формировании листьев каротиноиды образуются и накапливаются в пластидах еще в тот период, когда зачаток листа защищен в почке от действия света. В начале освещения образование хлорофилла в этиолированных проростках сопровождается временным падением содержания каротиноидов. Однако затем содержание каротиноидов восстанавливается и даже повышается с увеличением интенсивности освещения. Установлено, что между содержанием белка и каротиноидов имеется прямая коррелятивная связь. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Образование каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по сравнению с аммиачным. Недостаток серы резко уменьшает содержание каротиноидов. Большое значение имеет соотношение — Ca/Mg в питательной среде. Относительное увеличение содержания кальция приводит к усиленному накоплению каротиноидов по сравнению с хлорофиллом. Противоположное влияние оказывает увеличение содержания магния.