
- •2) Химические свойства оснований в свете теории электролитической диссоциации.
- •3) Хим. Свойства кислот в свете теории электр. Диссоциации.
- •4) Хим. Свойства солей в свете теории электр. Диссоциации.
- •5) Возникновение и развитие атомно - молекулярного учения.
- •6) Закон сохранения массы и энергии. Закон постоянства веществ. Закон эквивалентов. Закон авогадро.
- •7) Основные понятия химии: атом, молекула, хим. Элемент, вещество.
- •8) Модели строения атома: модель резерфорда, теория бора.
- •9) Открытие периодического закона . Периодическая система химических элементов:структура, периодическое изменение свойств элементов по периодам и группам.
- •10)Химическая связь. Основные виды химической связи.
- •11) Основные характеристики химической связи: длинна связи, энергия связи, валентные углы, полярность, дипольный момент, степень ионности, степень окисления.
- •13) Электронные структуры атомов элементов : энергетические уровни и подуровни электронов в атоме.
- •2. Кислотные и оснόвные оксиды
- •18) Ионно -обменные реакции. Условия необратимости ионно-обменных реакций. Ионно-обменные реакции между ионами в растворах электролитов.
- •21) Растворы, классификация и свойства растворов. Основные свойства растворов и их классификация
- •22)Способы выражения концентрации растворов.Способы выражения концентрации растворов
- •Пересчет концентраций растворов из одних единиц в другие
- •Упаривание раствора
- •Концентрирование раствора
- •Смешивание растворов с разными концентрациями
- •Разбавление раствора
- •23) Гидролиз солей . Ионное произведение воды , рН растворов.
- •Кислота или щелочь?
- •24)Электролиз. Применение электролиза.
- •25)Комплексные соединения. Координационная теория Вернера . Номеклатура комплексных соеденений . Классификация коплексных соединений .
- •1. КоординационнАя теориЯ Вернера
- •1. 1. Основные понятия координационной теории Вернера
- •1. 2. Определение заряда основных частиц комплексного соединения
- •1. 3. Номенклатура комплексных соединений
- •26) Понятие о химической термодинамике. Экзо- и эндотермические реакции. Применение электролиза в технике
- •Ионное произведение воды. PH раствора
- •Способы выражения концентрации растворов
- •Пересчет концентраций растворов из одних единиц в другие
- •Концентрирование раствора
- •Смешивание растворов с разными концентрациями
- •Разбавление раствора
- •Основные свойства растворов и их классификация
- •Классификация органических соединений
- •История развития органической химии
- •Строение органических соединений
- •Общая характеристика реакций органических соединений
- •Возникновение органических соединений
- •[Править] История
- •[Править] Классификация органических соединений
- •[Править] Правила и особенности классификации
- •[Править] Основные классы органических соединений
- •[Править] Строение органических молекул
- •[Править] Строение органического вещества
- •[Править] Особенности органических реакций
- •[Править] Определение структуры органических соединений
6) Закон сохранения массы и энергии. Закон постоянства веществ. Закон эквивалентов. Закон авогадро.
Закон сохранения массы: в результате химических превращений сумма масс веществ к реакции и сумма масс веществ после реакции одинакова ( или «масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции»). Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение - это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи. В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (А.Эйнштейн, 1905 г.), согласно которой масса тела зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Полученная телом энергия E связана с увеличением его массы m соотношением E = m · c ² , где с - скорость света. Это соотношение не используется в химических реакциях, т.к. 1 кДж энергии соответствует изменению массы на ~10-11 г и m практически не может быть измерено. В ядерных реакциях, где Е в ~106 раз больше, чем в химических реакциях, m следует учитывать. Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа. В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части - веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.
Закон сохранения энергии: никакая энергия не исчезает и не возникает, а только одни ее виды переходят в другие.
Закон постоянства состава: каждое вещество имеет постоянный качественный и количественный состав независимо от способов ее получения. Вещества, которые получены разными способами, но которые имеют тот же качественный и количественный состав, имеют одинаковые химические свойства.
Впервые сформулировал Ж.Пруст (1808 г). Из закона постоянства состава следует, что при образовании сложного вещества элементы соединяются друг с другом в определенных массовых соотношениях.
Пример. CuS - сульфид меди. m(Cu) : m(S) = Ar(Cu) : Ar(S) = 64 : 32 = 2 : 1 Чтобы получить сульфид меди (CuS) необходимо смешать порошки меди и серы в массовых отношениях 2 : 1. Если взятые количества исходных веществ не соответствуют их соотношению в химической формуле соединения, одно из них останется в избытке.
Например, если взять 3 г меди и 1 г серы, то после реакции останется 1 г меди, который не вступил в химическую реакцию. Вещества немолекулярного строения не обладают строго постоянным составом. Их состав зависит от условий получения.
Массовая доля элемента w(Э) – «омега (Элемент)» показывает, какую часть составляет масса данного элемента от всей массы вещества: где n - число атомов; Ar(Элем) - относительная атомная масса элемента; Mr - относительная молекулярная масса вещества.
w(Э) = (n · Ar(Э)) / Mr
Зная количественный элементный состав соединения можно установить его простейшую молекулярную формулу:
Обозначают формулу соединения Ax By Cz. Рассчитывают отношение X : Y : Z через массовые доли элементов:
w(A) = (х · Ar(А)) / Mr(AxByCz) w(B) = (y · Ar(B)) / Mr(AxByCz) w(C) = (z · Ar(C)) / Mr(AxByCz)
X = (w(A) · Mr) / Ar(А) Y = (w(B) · Mr) / Ar(B) Z = (w(C) · Mr) / Ar(C)
x : y : z = (w(A) / Ar(А)) : (w(B) / Ar(B)) : (w(C) / Ar(C))
Полученные цифры делят на наименьшее для получения целых чисел X, Y, Z. Записывают формулу соединения.
Закон кратных отношений: если два элемента образуют друг с другом несколько химических соединений, то массы одного элемента, которые приходятся на ту же массу другого элемента, относятся между собой как небольшие целые числа.
Закон объемных отношений: объемы взаимодействующих газообразных веществ относятся между собой и к объемам продуктов реакции, как небольшие целые числа.
Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.
Примеры:
2CO
+ O2
2CO2
При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.
При синтезе аммиака из элементов:
N2
+ 3H2
2NH3
Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака - объем исходной газообразной реакционной массы уменьшится в 2 раза.
Закон Авогадро (в 1811 г.): в ровных объемах разных газов при одинаковых условиях содержится одинаковое число частей (молекул, атомов, ионов).
Последствия: 1) моль любого газа при нормальных условиях занимает объем 22,4 л.
2) Моль любого газа при нормальных условиях содержит 6,02 - 1023 частей (стала Авогадро NА).
Закон эквивалентов: 1. Химические элементы соединяются друг с другом в строго определенных количествах, соответствующих их эквивалентам (В. Рихтер, 1792—1794 гг.). 2. Массы (объемы) веществ, которые реагируют, пропорциональны молярным массам (объемам) их эквивалентов. Понятие эквивалента введено в химию для сопоставления соединительной способности различных элементов. Эквивалентом химического элемента называют такую его массу, которая соединяется с 1,008 ч. м. (части массы) водорода или 8 ч. м. кислорода или замещает эти массы в соединениях.
Отметим, что один и тот же элемент может иметь не один, а несколько эквивалентов. Так, эквивалент углерода в оксиде углерода (IV) равен трем, а в оксиде углерода (II) — шести.
Понятие эквивалента можно распространить и на сложные соединения типа кислот, солей и оснований. Эквивалентом сложного соединения называют массу этого соединения, содержащую эквивалент водорода (кислоты) или эквивалент металлической составной части (основания, соли).
В общем виде закон эквивалентов можно сформулировать следующим образом: «во всех химических реакциях взаимодействие различных веществ друг с другом происходит в соответствии с их эквивалентами, независимо от того, являются ли эти вещества простыми или сложными».