Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая по ТВМС.docx
Скачиваний:
3
Добавлен:
10.12.2018
Размер:
283.34 Кб
Скачать

Международный университет природы, общества и человека «Дубна»

Кафедра прикладной математики и информатики

Курсовая работа

по теории вероятностей и математической статистике

на тему:

«Изучение изменения температуры по мере восхождения к вершине горы»

Выполнил

студент группы 2141

Шефер С.О.

Руководители:

Проф. Кирилов А.А.

Дубна, 2011

Оглавление

Введение 2

Постановка задачи 5

Теоретическая часть 6

Расчет коэффициента корреляции 15

Графики эмпирических функций распределения X и Y 20

Графики полигонов частот X и Y 22

Метод наименьших квадратов 24

Исследование линейной зависимости 24

Вывод 32

Список литературы 33

Введение

Математическая статистика — наука о математических методах систематизации и использовании статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала (выборки).

Во время статистических наблюдений для каждого объекта в ряде случаев можно измерить значение нескольких признаков. Таким образом, получается многомерная выборка. Если многомерную выборку обработать по значениям отдельного признака, то получится обычная обработка одномерной выборки.

Смысл обработки многомерных выборок состоит в том, чтобы установить связь между признаками. Связи могу быть функциональными, то есть каждому значению одной величины соответствует определенное значение другой величины.

Связь между случайными величинами часто носит случайный характер и называется статистической, если изменение одной величины вызывает изменение распределения другой величины. Если среднее значение одной случайной величины функционально зависит от значения другой случайной величины, то такая статистическая зависимость называется корреляционной.

Математическая статистика как наука начинается с работ Карла Фридриха Гаусса, на основе теории вероятностей исследовавшего и обосновавшего метод наименьших квадратов, созданный им в 1795 году и применённый для обработки астрономических данных (с целью уточнения орбиты карликовой планеты Церера). Его именем часто называют одно из наиболее популярных распределений вероятностей — нормальное, а в теории случайных процессов основной объект изучения — гауссовские процессы.

В конце XIX — начале ХХ века крупный вклад в математическую статистику внесли английские исследователи, прежде всего Карл Пирсон (1857—1936) и Роналд Фишер (1890—1962). В частности, Пирсон разработал критерий «хи-квадрат» проверки статистических гипотез, а Фишер — дисперсионный анализ, теорию планирования эксперимента, метод максимального правдоподобия оценки параметров.

В 30-е годы ХХ века поляк Ежи Нейман (1894—1977) и англичанин Эгон Пирсон развили общую теорию проверки статистических гипотез, а советские математики Андрей Николаевич Колмогоров (1903—1987) и Николай Васильевич Смирнов (1900—1966) заложили основы непараметрической статистики. В 40-е годы ХХ века румын Авраам Вальд (1902—1950) построил теорию последовательного статистического анализа.

Математическая статистика бурно развивается и ныне. За последние 40 лет можно выделить четыре принципиально новых направления исследований:

  • Разработка и внедрение математических методов планирования экспериментов;

  • Развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;

  • Развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;

  • Широкое развёртывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.

Вероятностные и статистические методы применимы всюду, где удаётся построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвящённого статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью её методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приёмочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надёжности и другие.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надёжности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы — требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, то есть длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли Александр Яковлевич Хинчин (1894—1959), Борис Владимирович Гнеденко (1912—1995) и другие отечественные учёные.