
- •Сили. Фундаментальні взаємодії в фізиці. Поняття про силові поля.
- •Консервативні силові поля.
- •Енергетична характеристика поля. Потенціал.
- •Силова характеристика поля. Напруженість
- •Зв'язок напруженості з потенціалом.
- •Принцип суперпозиції полів.
- •Графічне зображення силових потенціальних полів.
- •Використання теореми Гауса-Остроградського для обчислення напруженості електричних полів.
- •Основна задача електростатики.
- •Електричне поле в речовині.
- •Провідники в електричному полі.
- •Електрична ємність тіл.
- •Енергія зарядженого тіла. Енергія електричного поля.
- •Електричне поле в діелектриках.
- •Диполь в електричному полі.
- •Сегнетоелектрики.
- •Закони постійних електричних струмів.
- •Експериментальні закони постійних електричних струмів.
- •Закони Кірхгофа
- •Природа електричних струмів в різних речовинах Метали
- •Напівпровідники
- •Провідність електролітів
- •Провідність газів
- •Магнітна взаємодія струмів. Магнітне поле.
- •Використання закону Біо-Саввара-Лапласа для обчислення індукції магнітних полів.
- •Магнітне поле створене коловим витком
- •Циркуляція вектора індукції магнітного поля
- •Приклади використання теореми про циркуляцію.
- •Потік вектора індукції магнітного поля. Теорема Гауса. Робота, що виконується при переміщенні провідника струму в магнітному полі.
- •Сила, що діє на заряджену частинку в магнітному полі. Магнітне поле рухомого заряду.
- •Рух заряджених частинок в електричних та магнітних полях. Рівняння руху та енергія зарядженої частинки в електромагнітному полі
- •Приклади розв’язання рівняння руху заряджених частинок.
- •Рух зарядженої частинки в однорідному електричному полі:
- •Рух зарядженої частинки в однорідному магнітному полі:
- •Ефект Холла(Hall)
- •Використання пучків заряджених частинок
- •Взаємні перетворення електричних і магнітних полів
- •1. Явище електромагнітної індукції.
- •Явище самоіндукції
- •Основні положення теорії електромагнітного поля Максвелла
- •Магнітне поле в речовині
- •Магнітний і механічний момент електрона в вакуумі. Гіромагнітне відношення.
- •Пояснення діа і пара магнетизму
- •Існування гістерезису намагнічення – речовина може мати залишкову намагніченість, і крім того, можливе спонтанне намагнічення зразка.
- •Механізм виникнення властивостей феромагнетиків :
- •Коливання і хвилі
- •Характеристики гармонічних коливань
- •Вільні гармонічні коливання
- •Енергія коливань
- •Cкладання коливань
- •Характеристики згасаючих коливань
- •Вимушені коливання
- •Змінний електричний струм як вимушені електричні коливання
- •Потужність в колі змінного струму
- •Рівняння хвиль
- •Хвильове рівняння
- •Хвильове рівняння для електромагнітної хвилі
- •Плоска електромагнітна хвиля
- •Шкала електромагнітних хвиль
Напівпровідники
До напівпровідників входить широкий клас речовин. Особливе практичне значення мають германій та кремній (Ge, Si), які стали основою розвитку твердотільної електроніки.
Fig 44
Провідність напівпровідників на декілька порядків нижча ніж провідність металів. Характерною рисою напівпровідників є те, що питомий опір напівпровідника з ростом температури нелінійно спадає. В більшості випадків питомий опір напівпровідників може бути виражений як:
Отже, є експоненціальна залежність питомого опору (питомої провідності) від температури.
Якщо побудувати залежність як функції і , як , то отримаємо наступні залежності:
Fig 45
При низьких температурах всі валентні електрони атомів приймають участь у створенні хімічних зв’язків, в результаті чого в речовині відсутні вільні електрони, тобто немає носіїв струму; зокрема в Ge, який є чотирьох валентним, схему зв’язку малюють так:
Fig 46
Кожен атом взаємодіє з 4-ма сусідами, утворюючи ковалентні (міцні) зв’язки.
При нагріванні речовини деякі зв’язки розриваються, тобто окремі електрони стають вільними. В результаті з’являються вільні електрони і електронні вакансії, які називають «дірками».
Якщо до напівпровідника прикласти
зовнішнє поле, то з’явиться напрямлений
рух електронів до позитивного полюса
батареї, а дірок – до негативного. Тобто,
носіями струму в напівпровідниках є
електрони і дірки, тому густина
струму, що протікає через напівпровідник
запишеться через наступне співвідношення:
(обидва числа додатні, бо швидкості напрямлені в різні боки).
Провідність, при якій концентрація
електронів і дірок є одинакові
називають власною провідністю
напівпровідника.
Провідність напівпровідника може бути збільшена, якщо в нього ввести домішки. Атоми-домішки звичайно зв’язані з атомами напівпровідника іншим чином, ніж атоми напівпровідника між собою і ця відмінність може забезпечити домішкову провідність. Найкраще це видно при розгляді домішок іншої валентності. Нехай домішковий атом має п’ять валентних електронів. Якщо замінити атом Ge атомом домішки, то 4 валентні електрони домішкового атому приймають учать в створенні хімічних зв’язків, а 5-ий виявляється зайвим і при досить слабкому нагріванні може відірватись від свого атома (в атомі виникає вільний електрон без виникнення дірки). Дане явище проходить при нижчих температурах, ніж проявляється власна провідність напівпровідника. Тому при низьких температурах домішкова провідність відіграє визначальну роль.
Такий тип домішок
називається донором і викликає появу
-типу
провідності (
).
Якщо домішка має меншу
валентність (наприклад 3), то в атомі
домішки не вистачає електрона для
створення хімічного зв’язку. В результаті
може виникнути додаткова дірка. Така
домішка є акцепторна(
),
а провідність дірковою.
Величина називається енергією активації
провідності.
власної провідності більше ніж домішкової
провідності.
Домішкова провідність, яка накладається на власну має свою експоненту з меншою енергією активації. Це можна виявити з аналізу температурної залежності провідності.
Fig 47
–
енергія активації. Дані висновки є
справедливі і для
провідності діелектриків,
однак якщо в напівпровіднику енергія
активації не більше 2 еВ то для діелектрика
вона може бути і 4-6 еВ. Провідність
діелектрика можна підвищити, ввівши
домішки. Введення домішок називається
легуванням.