
- •14. Технологический процесс изготовления моп-транзистора.
- •15. Полупроводниковые приборы с отрицательным сопротивлением.
- •16. Динамические параметры логических микросхем.
- •17. Вольтамперная характеристика р-п перехода.
- •18. Туннельный диод. Принцип работы.
- •19. Классификация интегральных микросхем и транзисторов.
- •20. Способы включения биполярного транзистора и их конструктивные решения.
- •22. Основные этапы технологического процесса изготовления биполярных интегральных схем.
- •23. Простейший ттл (ттлш) вентиль. Принцип работы.
- •24. Конструкция и принцип работы многоэмиттерного транзистора.
- •25. Закон Мура. Степень интеграции интегральных схем.
- •26. Диод Шоттки. Принцип работы. Технология изготовления.
- •27. Вертикальная структура транзистора Шоттки.
- •28. Работа биполярного транзистора в ключевом режиме
- •29. 0Сновные схемы включения биполярного транзистора.
- •30. .Конструкция конденсатора в интегральном исполнении.
- •31. Структура интегрального резистора
- •32. 3Акон Мура. Степень интеграции интегральных микросхем.
- •33. 3Акон Мура…
- •34.Многослойные полупроводниковые структуры
- •35.Технологический маршрут изготовления моп - транзистора.
- •36.Билолярный транзистор с диодом Шоттки. Принцип работы.
- •37.Инжекционный вентиль. Принцип работы.
- •38. Зависимость коэффициента биполярного транзистора от коллекторного тока.
- •39.Технология изготовления и основные параметры полевого транзистора.
- •40.Высоколомехоустойчивая логика. Принцип работы.
- •41.Ттл (ттлш) - вентиль. Принцип работы.
- •42.0Собснности обратной характеристики р-n перехода.
- •43.Принцип работы транзистора в инверсном режиме и его конструкция.
- •44.Классификация полупроводниковых диодов.
- •45.Технологический процесс изготовления биполярного транзистора с диодом Шоттки.
- •46.Модель Эберса - Молла.
- •47.Классификация интегральных микросхем и дискретных приборов.
- •52.Эквивалентная схема интегрального резистора.
- •53.Система параметров светоизлучающего диода.
- •54.Работа биполярного транзистора в ключевом режиме.
- •55.Вольтамперная характеристика р-n перехода и диода Шоттки.
- •56.Способы включения биполярного транзистора.
- •57.Расчет параметров интегрального резистора.
- •58.Система электрических параметров логических схем.
- •59.Технологический процесс изготовления полевого транзистора.
- •60.Система статических и динамических параметров интегральных схем.
- •61 .Зависимость параметров биполярного транзистора от температуры.
- •62.Первый и второй закон Мура.
- •63 .Зависимость параметров полевого транзистора от температуры.
- •64.Способы включения полевого транзистора.
- •65.Структура интегрального конденсатора, изготовленного по биполярному технологическому процессу и его параметры.
- •66.Структура интегрального конденсатора, изготовленного в моп - техпроцессе и его параметры.
- •67.Основные параметры моп - транзисторов.
- •69.Классификация моп - транзисторов.
- •70. Понятие «жизненного» цикла полупроводниковых изделий.
- •Структура жизненного цикла изделия
- •Границы стадий жизненного цикла изделия
59.Технологический процесс изготовления полевого транзистора.
Полупроводниковые элементы на полевых транзисторах (рис. 2.1.12, 2.1.13) не требуют электрической изоляции и в этой связи технологический процесс содержит меньшее число операций.
В качестве примера ниже приведен технологический процесс ИМС, выполняемых на базе МДП- транзисторов n–p–n-типа с индуцированным каналом (рис. 2.1.12, а).
Последовательность выполнения операций и связанные с этим структурные изменения в поперечных разрезах подложки показаны на рис. 2.2.2. Используется подложка кремния p-типа диаметром от 60 до 250 мм. После очистки и последующего окисления выполняется фотолитография (первое маскирование) с травлением, открывающим всю площадь будущего элемента.
Далее
осуществляется второе окисление до
толщины 0,1…0,3 мкм в площади элемента.
На созданном оксиде производится вторая
литография, в процессе которой над
затвором оксид сохраняется, площадь
над будущими
областями
стока и истока от оксида освобождается.
После
соответствующей подготовки производится
диффузия бора, создаются тем самым
области стока–истока. Температура
процесса 1000…1100 °С,
в качестве источника бора может
использоваться диборан В2Н6 или
галогениды
бора BCl3 и BBr3. В случае использования
галогенидов ведут окислительную диффузию
для устранения эрозии поверхности. При
этом в газовую смесь добавляют кислород
и на поверхности кремния
образуется
слой SiO2B2O3. Из этого слоя и производится
загонка примеси, что позволяет более
точно регулировать необходимый профиль
концентрации носителей на заданной
глубине.
Третья фотолитография проводится для вскрытия окон в диэлектрике над областью затвора с целью последующего прецизионного окисления для создания диэлектрического оксидного слоя толщиной порядка 0,02 мкм.
В дальнейшем выполняется четвертая литография для вскрытия окон под омические контакты стока–истока, производится напыление слоя алюминия по всей площади и последующая пятая литография с целью получения топологии межэлементных соединений и контактных площадок. Основные обрабатывающие процессы заканчиваются напылением или осаждением защитного слоя (пассивация).
60.Система статических и динамических параметров интегральных схем.
К статическим параметрам относятся: входное U0вх и выходное U0вых напряжение логического нуля, входное U1вх и выходное U1вых напряжение логической единицы, аналогично токи логической единицы и нуля, коэффициент разветвления по выходу Краз, определяющий число единичных нагрузок, которые можно одновременно подключить к выходу микросхемы (единичной нагрузкой является один вход основного логического элемента данной серии интегральных микросхем); коэффициент объединения по входу Коб, определяющий число входов микросхемы, по которым реализуется логическая функция; допустимое напряжение статической помехи, характеризующее статическую помехоустойчивость микросхемы, то есть её способность противостоять воздействию мешающего сигнала, длительность которого превосходит время переключения микросхемы; средняя потребляемая мощность.
Статические параметры определяются с помощью статических характеристик, которые снимаются при медленных изменениях токов и напряжений. Это обстоятельство позволяет пренебрегать переходными процессами в ИЛЭ. К статическим характеристикам относятся: передаточная Uвых= f(Uвх) при Iвых=0, обратной связи Uвх= f(Uвых) при Iвх=0, входная Iвх= f(Uвх) при Iвых=0 и выходная Iвых= f(Uвх) при Iвх=0 . Вторая из названных характеристик практически не используется т.к. сигнал, поступающий с выхода ИЛЭ на его вход очень мал.
На рисунке 2а показана передаточная характеристика инвертирующих ИЛЭ (например И-НЕ, ИЛИ-НЕ) в предположении, что их характеристики идентичны. Действительно наблюдается разброс указанных характеристик как за счёт разброса параметров компонентов, входящих в состав ИЛЭ, так и за счёт различия режимов отдельных элементов. Поэтому передаточная характеристика для некоторой совокупности однотипных элементов представляет собой не одну кривую, а некоторую область, ограниченную сверху и снизу двумя граничными кривыми (рисунок2б).
Рисунок 2.
При этом U´вх max и U´вых max- максимальный и минимальный уровни выходного сигнала, который имеется хотя бы у одного из элементов данного типа. Аналогично рассматривается U0вых max и U0вых min. На этом же графике точками отмечены уровни входных сигналов: U0вх max – это такой уровень, при котором ни один из элементов данного типа не переключается из 1 в 0, U1вх min- уровень входного сигнала при котором на выходе любого элемента данного типа сохраняется сигнал 0. По этой характеристике можно определить запасы помехоустойчивости ИЛЭ достаточно провести прямые под углом 45 градусов от точек пересечения уровней U1вых min и U0вых max с осью ординат до пересечения с осью абсцисс.
Сравнивая полученные точки на оси абсцисс со значениями U0вх max и U1вх min определяют запасы помехоустойчивости по нулевому U0пом и по единичному U1пом сигналу на входе.
К динамическим параметрам, характеризующим свойства микросхемы в режиме переключения, относятся: время задержки сигнала при включении - интервал времени между входными и выходными импульсами при переходе Uвых ИЛЭ от U1вых до U0вых, измеренный либо на уровне 0,5 амплитуды импульса, либо на уровне порога чувствительности; время задержки сигнала при выключении- интервал времени между входным и выходным импульсами при переходе Uвых ИЛЭ от U0вых до U1вых, измеренный либо на уровне 0,5 амплитуды импульса, либо на уровне порога чувствительности; среднее время задержки.
Иногда в качестве параметров ИЛЭ приводят длительности фронтов нарастания и спада выходного напряжения.
Временные диаграммы напряжения на входе и на выходе ИЛЭ показаны на рисунке3.
Рисунок 3.