
- •Содержание
- •Структура пневматических приводов 9
- •Переключающие регистры 176
- •Основные газовые законы 205
- •1. Структура пневматических приводов
- •1. Структура пневматических приводов
- •1. Структура пневматических приводов
- •1. Структура пневматических приводов
- •1. Структура пневматических приводов
- •2. Физические основы функционирования пневмосистем
- •2.1. Основные параметры газа
- •2. Физические основы функционирования пневмосистем
- •2. Физические основы функционирования пневмосистем
- •2.2. Основные физические свойства газов
- •2. Физические основы функционирования пневмосистем
- •2.3. Основные газовые законы
- •2. Физические основы функционирования пневмосистем
- •2.4.1. Расход
- •2. Физические основы функционирования пневмосистем
- •2.4.2. Уравнение Бернулли
- •2. Физические основы функционирования пневмосистем
- •2.4.3. Режимы течения
- •2. Физические основы функционирования пневмосистем
- •2.4.4. Истечение газа через отверстие
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3.1. Производство и подготовка сжатого воздуха
- •3. Энергообеспечивающая подсистема
- •3.2. Компрессоры
- •3.2.1. Объемные компрессоры
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3.2.2. Динамические компрессоры
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3.3. Устройства очистки и осушки сжатого воздуха
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3.4 Ресиверы
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3.5. Трубопроводы. Соединения трубопроводов
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3.6. Блоки подготовки воздуха
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •3. Энергообеспечивающая подсистема
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •4.1. Пневматические цилиндры
- •4. Исполнительная подсистема
- •4.1.1. Пневмоцилиндры одностороннего действия
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •4.1.3. Позиционирование пневмоцилиндров
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •4.1.4. Бесштоковые пневмоцилиндры
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •4.2. Поворотные пневматические двигатели
- •4.3. Пневмодвигатели вращательного действия — пневмомоторы
- •4. Исполнительная подсистема
- •4, Исполнительная подсистема
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •4.4.1. Цанговые зажимы
- •4.4.2. Пневматические захваты
- •4. Исполнительная подсистема
- •4. Исполнительная подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5.1. Пневматические распределители
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5.1.1. Моностабильные пневмораспределители
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5.1.2. Бистабильные пневмораспределители
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5.1.3. Монтаж пневмораспределителей
- •5. Направляющая и регулирующая подсистема
- •5.1.4. Определение параметров пневмораспределителей
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5.2. Запорные элементы
- •5. Направляющая и регулирующая подсистема
- •5.3. Устройства регулирования расхода
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5.4. Устройства регулирования давления
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •5. Направляющая и регулирующая подсистема
- •6. Информационная подсистема
- •6. Информационная подсистема
- •6.1. Пневматические путевые выключатели
- •6. Информационная подсистема
- •6. Информационная подсистема
- •6.2. Струйные датчики положения
- •6. Информационная подсистема
- •6. Информационная подсистема
- •6. Информационная подсистема
- •6. Информационная подсистема
- •6.3. Пневмоклапаны последовательности
- •6. Информационная подсистема
- •6.4. Индикаторы давления
- •6. Информационная подсистема
- •6.5. Счетчики импульсов
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7.1. Основные логические функции
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7.2. Логические пневмоклапаны
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7.3. Пневмоклапаны выдержки времени
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7. Логико-вычислительная подсистема
- •7.4. Реализация функции запоминания сигнала в пневматических системах
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8.1. Циклические пневмосистемы хода
- •8. Пневматические приводы технологического оборудования
- •8.1.1. Формы представления хода технологического процесса
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8.1.2. Методы проектирования пневматических сау
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8.1.3. Переключающие регистры
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8.1.4. Реализация сервисных функций в пневматических системах
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8.2. Пневмогидравлические приводы
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8.3. Системы позиционирования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •8. Пневматические приводы технологического оборудования
- •9. Релейно-контактные системы управления
- •9.1.2. Электромеханические путевые (концевые) выключатели
- •9. Релейно-контактные системы управления
- •9.1.3. Бесконтактные путевые выключатели
- •9. Релейно-контактные системы управления
- •9. Релейно-контактные системы управления
- •9. Релейно-контактные системы управления
- •9.3. Устройства преобразования сигналов
- •9.3.1. Электропневматические преобразователи
- •9. Релейно-контактные системы управления
- •9.3.2. Пневмоэлектрические преобразователи (реле давления)
- •9. Релейно-контактные системы управления
- •9.4. Реализация логических функций в релейно-контактных системах управления
- •9. Релейно-контактные системы управления
4.1.3. Позиционирование пневмоцилиндров
Традиционные конструкции пневмоцилиндров позволяют обеспечить две точки позиционирования связанных с ними технологических объектов. Эти две точки соответствуют положениям «шток втянут» и «шток выдвинут». Область эффективного применения пневмоцилиндров значительно расширяется, если реализуются ос-
и \/пе>пжяш/1Р my BkiynnMkiv
a uiaHTn-nnuiY
ЛЛО1Л1 IM_
4. Исполнительная подсистема
онными ошибками. В зависимости от предъявляемых требований — числа точек позиционирования выходного звена, частоты их смены (режима работы), необходимой точности отработки приводом заданного перемещения — используют пневматические механизмы различной структуры и с различными принципами управления движением выходного звена.
Многопозиционные пневмоцилиндры
Чтобы обеспечить некоторое ограниченное число точек позиционирования (более двух), например в сортировочных устройствах, применяют многопозиционные пневмоцилиндры, состоящие из двух или более пневмоцилиндров с различными рабочими ходами.
На рис. 4.10 представлены две конструкции многопозиционных пневмоцилиндров, одна из которых (рис. 4.10, а) обеспечивает три, а вторая (рис. 4.10, б) — четыре точки позиционирования.
Рис.
4.10. Многопозиционные пневмоцилиндры
Число точек позиционирования можно увеличить, если скомбинировать таким же образом не два, а большее число пневмоцилиндров. При этом следует учитывать, что подобные конструкции могут функционировать нестабильно, когда штоки разных цилиндров движутся в противоположных направлениях.
Пневмоцилиндры с фиксатором штока
Путем механического удержания штока посредством специальных устройств (рис. 4.11) можно получить фактически неограниченное число точек позиционирования.
Рис.
4.11. Пневмоцилиндр с фиксатором штока
4. Исполнительная подсистема
В представленной на рис. 4.11 конструкциии шток б удерживается разрезным тормозным башмаком 4, кото-зый обжимает его под действием встроенной пружины 1. Разблокировка штока 6 осуществляется при подаче :«атого воздуха в рабочую полость 5 фиксатора. При этом поршень 2, сжимая пружину 1, освобождает элементы конструкции 3, прижимающие тормозной башмак 4 к штоку 6. Фиксаторы позволяют надежно удерживать _ток пневмоцилиндра под нагрузкой даже при внезапном падении давления в пневмосети.
4.1.4. Бесштоковые пневмоцилиндры
Существует много технологических операций, где требуются значительные (до нескольких метров) переме-_ения объектов, например при транспортировке. Применение пневмоцилиндров традиционного исполнения в -аких случаях не только затруднительно, но зачастую и невозможно. Для обеспечения большого хода необходим шток соответствующей длины, что обусловливает резкое увеличение продольного габарита пневмоцилиндра; кроме того, значительные размеры консольной части штока в выдвинутом положении могут стать причиной потери устойчивости под нагрузкой.
Задачу осуществления значительных по величине перемещений можно было бы решить посредством телескопических цилиндров. Однако такие цилиндры, широко используемые в гидрофицированных мобильных и -юдъемно-транспортных машинах и установках (например, для подъема кузовов грузовых автомобилей), не нашли применения в пневмоприводах общепромышленного назначения.
По существу, шток является «лишней» деталью в цилиндре, и предназначен он для передачи усилия от "юршня к внешнему объекту. Бесштоковые конструкции, в которых усилие передается непосредственно от поршня, имеют очевидные преимущества, главное из которых заключается в как минимум двукратном уменьшении продольного габарита по сравнению с пневмоцилиндром традиционной конструкции с той же величиной <ода (рис. 4.12).
На рис 4.12, а показано изменение продольного габарита пневмоцилиндра традиционного конструктивного исполнения до и после совершения рабочего хода, а на рис. 4.12, б — то же самое для пневмоцилиндра оесштоковой конструкции. Очевидно, что преимущества бесштоковых пневмоцилиндров проявляются в значи--ельной степени при больших величинах рабочего хода.
Пневмоцилиндр с гибким штоком
Одним из конструктивных решений, позволяющих отказаться от штока в его традиционном значении, является пневмоцилиндр с гибким штоком (рис. 4.13).
6't