Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по Реографии.docx
Скачиваний:
59
Добавлен:
08.12.2018
Размер:
469.17 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА 24

ЗАЩИЩЕНА С ОЦЕНКОЙ

РУКОВОДИТЕЛЬ

Кривохижина О.В.

должность, уч. степень, звание

подпись, дата

инициалы, фамилия

ОТЧЕТ

По Лабораторной работе: “Методические указания к лабораторной работе “Реограф””.

Шхалахов А.С.

Бардюгов С.А

Кузнецова О.

Глебов Д.

РАБОТУ ВЫПОЛНИЛИ СТУДЕНТЫ гр 2846:

Санкт-Петербург 2011

Цель работы. 1) Ознакомление с работой реографа и снятием реограммы.

Введение

Реографией называется метод изучения состояния какой-либо системы и происходящих в ней процессов по изменению электрического сопротивления этой системы для постоянного или переменного тока. Реография - весьма точный метод, так как даже очень малые изменения сопротивления могут быть зарегистрированы современными приборами - реографами.

Реограммой называется кривая, соответствующая зависимости сопротивления исследуемой системы R (или его изменения D R) от времени : R = R(t) или D R= D R(t).

В медицинской диагностике разработаны методики регистрации реограмм любого органа человеческого тела: сердца (реокардиограмма), мозга (реоэнцефалограмма), магистральных сосудов, печени, легких, конечностей и др. При этом вид реограммы дает нужную информацию об изменениях кровенаполнения органа при пульсациях сердца, о скорости кровотока, состоянии сосудистой системы и др. Такая информация существенно дополняет, в частности, результаты электрографического обследования при диагностике сердечно- сосудистых и других патологий, поэтому реография часто применяется в комплексе с ЭКГ, ЭЭГ и т.д.

Реографическое обследование практически совершенно безвредно для пациента, так как проходящие через него при этом токи имеют очень малую величину. Поэтому реографическое обследование может продолжаться в течение длительного времени (например, при функциональной диагностике), либо неоднократно повторяться.

В настоящее время метод реографии считается весьма перспективным и широко используется в различных областях клинической диагностики и в физиологических исследованиях.

Теоретические основы. Импеданс биологических тканей.

Биологические ткани, в том числе ткани тела человека, способны проводить электрический ток. Основными носителями заряда в них являются ионы.

Наибольшей удельной электропроводимостью (g), то есть наименьшим удельным сопротивлением (r), обладают ярко выраженные электролиты - спинномозговая жидкость

(g » 0,018 Ом-1× см-1) и кровь (g » 0,006 Ом-1× см-1). Жировая, костная ткани, а также сухая кожа, имеют очень малую электропроводность (соответственно g » 0,0007 Ом-1× см-1; 10-9 Ом-1× см-1; 10-7 Ом-1× см-1).

2.1.Рассмотрим простейшую схему измерения сопротивления какого-либо органа или участка тела О (рис. 1).

Если I - сила тока через участок О, измеряемая миллиамперметром тАU - напряжение между электродами Э-Э, измеряемое вольтметром V, то .

Сопротивление R должно изменяться в такт с сердечными сокращениями, поскольку во время них происходят изменения кровенаполнения органа.

Однако практически эти изменения так малы (десятые доли Ом и меньше), что не могут быть надежно зарегистрированы на фоне большого общего сопротивления участка О(обусловленного большим сопротивлением кожи, межтканевых границ раздела, переходным сопротивлением кожа-электрод и др.). Кроме того, истинное сопротивление участка тела на постоянном токе вообще трудно зарегистрировать из-за возникающей поляризации тканей и появления дополнительных зарядов на электродах.

По этим причинам в медицинской реографии не используется постоянный ток, а вместо него применяется переменный ток большой частоты (порядка 100 кГц).

2.2.Рассмотрим схему при которой на электроды Э-Э (рис. 2) подается переменное напряжение

 (1)

в цепи исследуемого объекта О протекает переменный ток, изменяющийся по закону

, (2)

- циклическая частота; - частота переменного тока;  - сдвиг по фазе между током и напряжением.

Величина

(3)

называется, как известно, полным сопротивлением или импедансом объекта и зависит как от свойств самого объекта (электрического сопротивления R, емкости С и индуктивности L объекта), так и от частоты переменного тока.

В тканях тела человека структур, обладающих индуктивными свойствами, не обнаружено. Однако клеточные мембраны, а также границы раздела между различными тканями в определенном смысле подобны конденсаторам (при прохождении тока в них возникает двойной электрический слой зарядов ), поэтому любой участок тела обладает более или менее значительной емкостью С. Так как емкостное сопротивление  уменьшается при увеличении частоты переменного тока  по закону

,

(4)

то можно ожидать, что и полное сопротивление (импеданс) участка тела также будет убывать с частотой.

Действительно, характерная зависимость импеданса живой ткани Z от частоты переменного тока n имеет вид, представленный на рис. 3.

При малых частотахn (до 104 Гц) импеданс велик и примерно равен активному сопротивлению R ткани для постоянного тока. При больших частотах Z уменьшается, достигая n ~108 Гц некоторого минимального значения R'. Такая зависимость импеданса от частоты может быть приближенно моделирована электрической схемой, представленной на рис. 4.

Действительно, при малых частотах  и Z » R (весь ток идет через верхнее плечо схемы), при больших частотах  и  (параллельное соединение сопротивлений).

В медицинской реографии используются частоты переменного тока порядка 100 кГц. При столь больших частотах общий импеданс исследуемого органа или участка тела уменьшается и значительно большей степени зависит от кровенаполнения органа. Поэтому относительные изменения импеданса во время сердечных сокращений становятся большими, и их регистрация значительно облегчается. Причем эти изменения практически определяются лишь изменением активной составляющей R полного импеданса исследуемого органа, так как емкостная составляющая на используемых частотах при изменении кровенаполнения изменяется совершенно незначительно.

Перечислим основные факторы, определяющие вид реограммы органа:

б) скорость кровотока в органе (при увеличении скорости течения крови ее удельное сопротивление уменьшается);

в) плотность и химический состав крови;

г) толщина и упругость (эластичность) стенок кровеносных сосудов;

д) геометрия органа.

Состояние кожи, поверхностных слоев и соединительной ткани при правильной методике не должно оказывать существенного влияния на вид реограммы.

Другим важным преимуществом переменного тока является то, что на больших частотах его раздражающее действие уменьшается. А именно: величина плотности порогового тока * в диапазоне частот 50 - 300 кГц увеличивается прямо пропорционально частоте тока n. Так, на частоте реографии n ~ 100 кГц  - величина порядка 1 тА/см2, тогда как во время реографического обследования плотность тока обычно не превышает 0,2 та/см2 (для этого электроды должны иметь площадь не менее 5 см2 каждый!).

Такой ток, как правило, не ощущается пациентом, а реографическое обследование является абсолютно безвредным и может повторяться многократно.