
- •3. Ис. Назначение и классификация.
- •4. Ис для прямых измерений.
- •5. Статистические ис.
- •6. Системы для раздельного измерения взаимосвязанных величин.
- •8. Общие сведения и классификация стд.
- •9. Функции, задачи стд и основные элементы технической диагностики.
- •10. Диагностические модели и методы их исследования.
- •11. Тестовые и функциональные методы диагностирования.
- •12. Распознающие измерительные системы (раи).
- •13. Телеизмерительные информационные системы (тиис).
- •16. Компьютерно-измерительные системы (кис).
- •17. Агрегатные комплексы технических средств.
- •18. Виды совместимостей функциональных блоков в иис.
- •20. Основные характеристики интерфейса.
- •21. Внутренние и внешние интерфейсы.
- •22. Структуры соединения фб.
- •23. Классификация интерфейсов по принципу передачи информации.
- •24. Классификация интерфейсов по способу передачи информации во времени.
- •25. Классификация интерфейсов по режиму обмена информацией.
- •26. Классификация унифицированных информационных сигналов гсп.
- •27. Унифицирующие измерительные преобразователи.
- •28.29. Преобразователь ш-78 (эп4700) ш-79 (эп4701). Устройство, принцип действия, поверка.
- •31. Блок извлечения квадратного корня бик-1. Устройство, принцип действия, поверка.
- •32. Общие сведения и основные характеристики коммутаторов.
- •33. Структуры построения коммутаторов.
- •34. Классификация средств сопряжения эвм с объектами измерения.
- •34. Комплексы связи с объектом ксо м-64.
- •36. Устройство логического управления второго уровня на базе мпк (улу2-эвм).
- •39. Блоки распределения унифицированного токового сигнала (брт, бгрт). Устройство, назначение, принцип действия.
- •40. Блоки распределения унифицированного токового сигнала (брт, бгрт). Поверка (калибровка).
- •41. Увк на базе микропроцессоров.
- •42. Увк на базе микроЭвм.
- •43. Увк на базе малых эвм.
- •44. Органы управления объектом исследования.
- •45. Методы и устройства регистрации измерительной информации.
- •48. Сои светоизлучающего типа.
- •49. Сои модулирующего типа.
3. Ис. Назначение и классификация.
ИС используются для различного рода комплексных исследований научного характера. Предназначены для работы с объектами, характеризующимися до начала эксперимента минимумом априорной информации. Цель создания таких систем заключается в получении максимального количества достоверной измерительной информации об объекте. Информация, полученная на выходе ИИС, может использоваться для принятия каких-либо решений, создания возмущающих воздействий, но не для управления объектом. ИИС предназначена для создания дополнительных условий проведения эксперимента, для изучения реакции объекта на эти воздействия. Следовательно, использование информации не входит в функции ИИС. Для измерительных систем характерны:
-
высокие требования к метрологическим характеристикам;
-
широкий спектр измеряемых физических величин и в особенности их количество (число измерительных каналов);
-
необходимость в средствах представления информации;
-
большой объем внешней памяти для систем, в которых обработка и анализ результатов измерений выполняются после завершения процесса эксперимента с помощью набора различных средств обработки и представления информации. Классификация ИС:
- ИС для прямых измерений (многоканальные, многоточечные, мультиплицированные, сканирующие);
- Статистические ИС (для измерения параметров распределения случайных процессов, корреляционные, системы спектрального анализа);
- Раздельное измерение зависимых величин (многомерные, аппроксимирующие).
4. Ис для прямых измерений.
Входными в ИС для прямых измерений являются величины, воспринимаемые датчиками или другими входными устройствами системы. Задача таких ИС заключается в выполнении аналого-цифровых преобразований множества величин и выдаче полученных результатов измерения. В рассматриваемых ИС основные типы измеряемых входных величин могут быть сведены либо к множеству изменяющихся во времени величин, либо к изменяющейся во времени t и распределенной по пространству Λ непрерывной функции х (t,Λ). Измерительные системы, производящие измерения дискрет функции х(t,Λ), основаны на использовании многоканальных, многоточечных, мультиплицированных и сканирующих структур. Многоканальные системы объединяются в системы параллельного действия, применяемые во всех отраслях народного хозяйства. Причины распространения многоканальных ИС заключаются в возможности использования стандартных, относительно простых, измерительных приборов, в наиболее высокой схемной надежности таких систем, в возможности получения наибольшего быстродействия при одновременном получении результатов измерения, в возможности индивидуального подбора СИТ к измеряемым величинам. Недостатки таких систем - сложность и большая стоимость по сравнению с другими системами. Сканирующие системы. В измерительных системах последовательного действия - сканирующих измерительных системах - операции получения информации выполняются последовательно во времени с помощью одного канала измерения. Если измеряемая величина распределена в пространстве или собственно координаты точки являются объектом измерения, то восприятие информации в таких системах выполняется с помощью одного сканирующего датчика. Сканирующие системы находят применение при расшифровке графиков. В медицине, геофизике, метрологии, при промышленных испытаниях. Сканирование может выполняться непосредственно воспринимающим элементом или сканирующим лучом при неподвижном воспринимающем элементе. Многоточечные ИС. Выполнение условий минимальной сложности ИС приводит к необходимости многократного последовательного использования отдельных устройств измерительного тракта, к применению ИС параллельно-последовательного действия, которые носят название многоточечных ИС. Работа таких ИС основана на принципе квантования измеряемых непрерывных величин по времени. Измерительные системы с общей образцовой величиной — мультиплицированные развертывающие измерительные системы — содержат множество параллельных каналов. Структура системы включает датчики и устройство сравнения (одно для каждого канала измерения), источник образцовой величины и одно или несколько устройств представления измерительной информации. Мультиплицированные развертывающие измерительные системы позволяют в течение цикла изменения образцовой величины (развертки) выполнять измерение значений, однородных по физической природе измеряемых величин, без применения коммутационных элементов в канале измерения. Такие ИС имеют меньшее количество элементов по сравнению с ИС параллельного действия и могут обеспечить практически такое же быстродействие.