
- •Билет 1 Поколения компьютеров
- •1.1. Первое поколение компьютеров.
- •1.2. Второе поколение компьютеров.
- •1.3. Третье поколение – компьютеры на интегральных схемах.
- •1.4. Компьютеры четвертого поколения и далее.
- •Аппаратный уровень вычислительной системы
- •2.2. Управление физическими ресурсами
- •2.3. Управление логическими/виртуальными ресурсами.
- •Система программирования – это комплекс программ, обеспечивающий поддержание жизненного цикла программы в вычислительной системе.
- •2.5 Прикладные системы
- •Этапы развития
- •2.5.3 Основные тенденции в развитии современных прикладных систем
- •. Выводы
- •Билет №6 Основы архитектуры компьютера. Основные компоненты и характеристики. Структура и функционирование цп. Центральный процессор Структура, функции цп
- •Регистры общего назначения (рон)
- •Специальные регистры
- •Буферизация работы с операндами
- •Алгоритм для записи данных в озу
- •Буферизация выборки команд
- •Примерный алгоритм использования
- •Определение. Последовательность действий при обработке
- •3.6.1 Внешние запоминающие устройства (взу).
- •3.6.1.1 Устройство последовательного доступа
- •3.6.1.2 Устройства прямого доступа
- •3.6.2 Организация потоков данных при обмене с внешними устройствами
- •3.6.4 Организация управления внешними устройствами
- •Прерывания: организация работы внешних устройств.
- •Синхронная работа с ву
- •Асинхронная работа с ву
- •Билет 11 Иерархия памяти
- •4.4. Иерархия памяти.
- •Билет 12 Мультипрограммный режим
- •Билет 13 Организация регистровой памяти (регистровые окна, стек)
- •5.2. Модель организации регистровой памяти в Intel Itanium.
- •Билет 14 Виртуальная оперативная память Аппарат виртуальной памяти
- •Билет 15
- •Системы с распределенной памятью – mpp.
- •Системы с общей памятью – smp.
- •Системы с неоднородным доступом к памяти – numa.
- •Кластерные системы.
- •Билет 17. Терминальные комплексы. Компьютерные сети. Терминальные комплексы.
- •Многомашинные вычислительные комплексы
- •Билет 18 Базовые понятия, определения, структура
- •Системы разделения времени
- •Сетевые, распределенные ос
- •Билет 21 Семейство протоколов tcp/ip
- •Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- •Транспортный уровень
- •Уровень прикладных программ
- •Однако жизненные циклы процессов в реальных системах могут иметь свою, системно-ориентированную совокупность этапов.
- •Типы процессов
- •Принципы организации свопинга.
- •Определение процесса. Контекст
- •Контекст процесса
- •Аппарат системных вызов в oc unix.
- •Базовые средства организации и управления процессами
- •Механизм замены тела процесса.
- •Завершение процесса.
- •Жизненный цикл процессов
- •Формирование процессов 0 и 1
- •Основные задачи планирования
- •Планирование распределения времени цп между процессами
- •8.3.1 Кванты постоянной длины.
- •8.3.2 Кванты переменной длины
- •Алгоритмы, основанные на приоритетах
- •8.4.1 Планирование по наивысшему приоритету (highest priority first - hpf).
- •8.4.2 Класс подходов, использующих линейно возрастающий приоритет.
- •8.4.3 Нелинейные функции изменения приоритета
- •8.5 Разновидности круговорота.
- •8.6 Очереди с обратной связью (feedback – fb).
- •Билет 27 Смешанные алгоритмы планирования
- •Билет 29 Планирование в системах реального времени
- •Семафоры.
- •Мониторы.
- •Дополнительная синхронизация: переменные-условия.
- •Обмен сообщениями.
- •Синхронизация.
- •Адресация.
- •Длина сообщения.
- •Билет 33 Классические задачи синхронизации процессов. «Обедающие философы»
- •Билет 34 Задача «читателей и писателей»
- •Билет 35 Задача о «спящем парикмахере»
- •Сигналы.
- •Обработка сигнала.
- •Программа “Будильник”.
- •Двухпроцессный вариант программы “Будильник”.
- •Программные каналы
- •Использование канала.
- •Реализация конвейера.
- •Совместное использование сигналов и каналов – «пинг-понг».
- •Именованные каналы (fifo)
- •Модель «клиент-сервер».
- •Билет 39 Трассировка процессов. Трассировка процессов.
- •Трассировка процессов.
- •Для билетов 40-42 общая часть Именование разделяемых объектов.
- •Генерация ключей: функция ftok().
- •Общие принципы работы с разделяемыми ресурсами.
- •Очередь сообщений.
- •Доступ к очереди сообщений.
- •Отправка сообщения.
- •Получение сообщения.
- •Управление очередью сообщений.
- •Использование очереди сообщений.
- •Очередь сообщений. Модель «клиент-сервер»
- •Билет 41 Разделяемая память
- •Создание общей памяти.
- •Доступ к разделяемой памяти.
- •Открепление разделяемой памяти.
- •Управление разделяемой памятью.
- •Общая схема работы с общей памятью в рамках одного процесса.
- •Семафоры.
- •Доступ к семафору
- •Операции над семафором
- •Управление массивом семафоров.
- •Работа с разделяемой памятью с синхронизацией семафорами.
- •1Й процесс:
- •2Й процесс:
- •Механизм сокетов.
- •Типы сокетов. Коммуникационный домен.
- •Создание и конфигурирование сокета. Создание сокета.
- •Связывание.
- •Предварительное установление соединения. Сокеты с установлением соединения. Запрос на соединение.
- •Сервер: прослушивание сокета и подтверждение соединения.
- •Прием и передача данных.
- •Завершение работы с сокетом.
- •Резюме: общая схема работы с сокетами.
- •Билет 44
- •Структурная организация файлов
- •Атрибуты файла
- •Типовые программные интерфейсы работы с файлами
- •Индексные узлы (дескрипторы)
- •Модели организации каталогов
- •Варианты соответствия: имя файла – содержимое файла
- •Организация фс Unix
- •Логическая структура каталогов
- •Билет 50. Модель версии System V Структура фс
- •Работа с массивами номеров свободных блоков
- •Работа с массивом свободных ид
- •Индексные дескрипторы
- •Адресация блоков файла
- •Файл каталог
- •Установление связей
- •Недостатки фс модели версии System V
- •Билет 51. Модель версии ffs bsd
- •Стратегии размещения
- •Внутренняя организация блоков
- •Структура каталога ffs
- •Архитектура.
- •Программное управление внешними устройствами
- •Буферизация обмена
- •Планирование дисковых обменов
- •Билет 54 .Raid системы.
- •Файлы устройств, драйверы
- •Буферизация при блок-ориентированном обмене
- •Билет 57. Управление оперативной памятью
- •Двухуровневая организация
Билет 50. Модель версии System V Структура фс
Файловая система Unix может занимать раздел диска (partition). Количество разделов на каждом диске, их размеры определяются при предварительной подготовке устройства (разметка). Unix рассматривает разделы как отдельные, независимые устройства.
Суперблок файловой системы содержит оперативную информацию о текущем состоянии файловой системы, а также данные о параметрах настройки, в частности:
•размер логического блока (512б, 1024б, 2048б);
•размер файловой системы в логических блоках (включая суперблок);
•максимальное количество индексных дескрипторов (определяет размер области индексных дескрипторов);
•число свободных блоков;
•число свободных индексных дескрипторов;
•специальные флаги;
•массив номеров свободных блоков;
•массив номеров свободных индексных дескрипторов;
•и др.
В ОП постоянно находится актуальная копия суперблока.
Область (пространство) индексных дескрипторов.
Индексный дескриптор – это специальная структура данных файловой системы, которая ставится во взаимно однозначное соответствие с каждым файлом.
Размер пространства индексных дескрипторов определяется параметром генерации файловой системы по количеству индексных дескрипторов, которые указаны в суперблоке.
Содержит:
1.Тип файла
2. права доступа к файлу
3. число имен каталогов ФС, ассоциированных с данным индексным дискриптором.
4. идентификатор владельца
5. размер файлда в байтах
6. время послдней модификации
7.Массив номеров блоков файлов
Блоки файлов.
Это пространство на системном устройстве, в котором размещается вся информация, хранящаяся в файлах и о файлах, которая не поместилась в предыдущие блоки файловой системы.
Работа с массивами номеров свободных блоков
В суперблоке файловой системы размещается массив номеров свободных блоков, этот массив является началом полного списка содержащего номера всех свободных блоков файловой системы.
Все свободные блоки ФС организованы в однонаправленный список, структурная организация которого следующая: 1-й элемент этого списка – это есть массив из Ν ссылок, которые размещаются в суперблоке. Ν зависит от конкретной ОС, пусть это будет 100. 0-й элемент этого массива есть номер блока из пространства блоков ФС, в котором находится продолжение этого списка. Соответственно 0-й элемент этого блока есть ссылка на следующий массив из Ν ссылок и т.д. ФС оперативно работает с этим массивом. Если в нем есть свободные места, то при освобождении блоков, они записываются на свободные места, если требуются новые блоки, то они выбираются из этого массива. Если массив исчерпывается, то информация берется из следующего блока. Если массив полностью заполнен, т.е. освобождается много блоков, то выбирается следующий свободный блок и этот массив скидывается на этот блок. Это достаточно важная информация, которая в каждый момент отражает состояние ФС.
Оперативный доступ к списку осуществляется посредством использования массива в суперблоке.
Работа с массивом свободных ид
Массив номеров свободных индексных дескрипторов содержит оперативный набор номеров свободных индексных дескрипторов. Размер массива - Nиндекс.
При освобождении индексного дескриптора, если есть свободное место в массиве, то номер освободившегося индексного дескриптора записывается в соответствующий элемент массива. Если свободного места в массиве нет, то этот номер «забывается».
При запросе нового индексного дескриптора осуществляется поиск в массиве, если массив не пустой, то все в порядке, если массив пустой – происходит операция обновления его содержимого (происходит просмотр области индексных дескрипторов и занесение в массив обнаруженных свободных). Т.е. массив свободных индексных дескрипторов – это своеобразный буфер.