
- •Билет 1 Поколения компьютеров
- •1.1. Первое поколение компьютеров.
- •1.2. Второе поколение компьютеров.
- •1.3. Третье поколение – компьютеры на интегральных схемах.
- •1.4. Компьютеры четвертого поколения и далее.
- •Аппаратный уровень вычислительной системы
- •2.2. Управление физическими ресурсами
- •2.3. Управление логическими/виртуальными ресурсами.
- •Система программирования – это комплекс программ, обеспечивающий поддержание жизненного цикла программы в вычислительной системе.
- •2.5 Прикладные системы
- •Этапы развития
- •2.5.3 Основные тенденции в развитии современных прикладных систем
- •. Выводы
- •Билет №6 Основы архитектуры компьютера. Основные компоненты и характеристики. Структура и функционирование цп. Центральный процессор Структура, функции цп
- •Регистры общего назначения (рон)
- •Специальные регистры
- •Буферизация работы с операндами
- •Алгоритм для записи данных в озу
- •Буферизация выборки команд
- •Примерный алгоритм использования
- •Определение. Последовательность действий при обработке
- •3.6.1 Внешние запоминающие устройства (взу).
- •3.6.1.1 Устройство последовательного доступа
- •3.6.1.2 Устройства прямого доступа
- •3.6.2 Организация потоков данных при обмене с внешними устройствами
- •3.6.4 Организация управления внешними устройствами
- •Прерывания: организация работы внешних устройств.
- •Синхронная работа с ву
- •Асинхронная работа с ву
- •Билет 11 Иерархия памяти
- •4.4. Иерархия памяти.
- •Билет 12 Мультипрограммный режим
- •Билет 13 Организация регистровой памяти (регистровые окна, стек)
- •5.2. Модель организации регистровой памяти в Intel Itanium.
- •Билет 14 Виртуальная оперативная память Аппарат виртуальной памяти
- •Билет 15
- •Системы с распределенной памятью – mpp.
- •Системы с общей памятью – smp.
- •Системы с неоднородным доступом к памяти – numa.
- •Кластерные системы.
- •Билет 17. Терминальные комплексы. Компьютерные сети. Терминальные комплексы.
- •Многомашинные вычислительные комплексы
- •Билет 18 Базовые понятия, определения, структура
- •Системы разделения времени
- •Сетевые, распределенные ос
- •Билет 21 Семейство протоколов tcp/ip
- •Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- •Транспортный уровень
- •Уровень прикладных программ
- •Однако жизненные циклы процессов в реальных системах могут иметь свою, системно-ориентированную совокупность этапов.
- •Типы процессов
- •Принципы организации свопинга.
- •Определение процесса. Контекст
- •Контекст процесса
- •Аппарат системных вызов в oc unix.
- •Базовые средства организации и управления процессами
- •Механизм замены тела процесса.
- •Завершение процесса.
- •Жизненный цикл процессов
- •Формирование процессов 0 и 1
- •Основные задачи планирования
- •Планирование распределения времени цп между процессами
- •8.3.1 Кванты постоянной длины.
- •8.3.2 Кванты переменной длины
- •Алгоритмы, основанные на приоритетах
- •8.4.1 Планирование по наивысшему приоритету (highest priority first - hpf).
- •8.4.2 Класс подходов, использующих линейно возрастающий приоритет.
- •8.4.3 Нелинейные функции изменения приоритета
- •8.5 Разновидности круговорота.
- •8.6 Очереди с обратной связью (feedback – fb).
- •Билет 27 Смешанные алгоритмы планирования
- •Билет 29 Планирование в системах реального времени
- •Семафоры.
- •Мониторы.
- •Дополнительная синхронизация: переменные-условия.
- •Обмен сообщениями.
- •Синхронизация.
- •Адресация.
- •Длина сообщения.
- •Билет 33 Классические задачи синхронизации процессов. «Обедающие философы»
- •Билет 34 Задача «читателей и писателей»
- •Билет 35 Задача о «спящем парикмахере»
- •Сигналы.
- •Обработка сигнала.
- •Программа “Будильник”.
- •Двухпроцессный вариант программы “Будильник”.
- •Программные каналы
- •Использование канала.
- •Реализация конвейера.
- •Совместное использование сигналов и каналов – «пинг-понг».
- •Именованные каналы (fifo)
- •Модель «клиент-сервер».
- •Билет 39 Трассировка процессов. Трассировка процессов.
- •Трассировка процессов.
- •Для билетов 40-42 общая часть Именование разделяемых объектов.
- •Генерация ключей: функция ftok().
- •Общие принципы работы с разделяемыми ресурсами.
- •Очередь сообщений.
- •Доступ к очереди сообщений.
- •Отправка сообщения.
- •Получение сообщения.
- •Управление очередью сообщений.
- •Использование очереди сообщений.
- •Очередь сообщений. Модель «клиент-сервер»
- •Билет 41 Разделяемая память
- •Создание общей памяти.
- •Доступ к разделяемой памяти.
- •Открепление разделяемой памяти.
- •Управление разделяемой памятью.
- •Общая схема работы с общей памятью в рамках одного процесса.
- •Семафоры.
- •Доступ к семафору
- •Операции над семафором
- •Управление массивом семафоров.
- •Работа с разделяемой памятью с синхронизацией семафорами.
- •1Й процесс:
- •2Й процесс:
- •Механизм сокетов.
- •Типы сокетов. Коммуникационный домен.
- •Создание и конфигурирование сокета. Создание сокета.
- •Связывание.
- •Предварительное установление соединения. Сокеты с установлением соединения. Запрос на соединение.
- •Сервер: прослушивание сокета и подтверждение соединения.
- •Прием и передача данных.
- •Завершение работы с сокетом.
- •Резюме: общая схема работы с сокетами.
- •Билет 44
- •Структурная организация файлов
- •Атрибуты файла
- •Типовые программные интерфейсы работы с файлами
- •Индексные узлы (дескрипторы)
- •Модели организации каталогов
- •Варианты соответствия: имя файла – содержимое файла
- •Организация фс Unix
- •Логическая структура каталогов
- •Билет 50. Модель версии System V Структура фс
- •Работа с массивами номеров свободных блоков
- •Работа с массивом свободных ид
- •Индексные дескрипторы
- •Адресация блоков файла
- •Файл каталог
- •Установление связей
- •Недостатки фс модели версии System V
- •Билет 51. Модель версии ffs bsd
- •Стратегии размещения
- •Внутренняя организация блоков
- •Структура каталога ffs
- •Архитектура.
- •Программное управление внешними устройствами
- •Буферизация обмена
- •Планирование дисковых обменов
- •Билет 54 .Raid системы.
- •Файлы устройств, драйверы
- •Буферизация при блок-ориентированном обмене
- •Билет 57. Управление оперативной памятью
- •Двухуровневая организация
Типы процессов
В различных системах используются различные трактовки определения термина процесс. Рассмотрим уточнение понятия процесса.
Полновесные процессы - это процессы, выполняющиеся внутри защищенных участков памяти операционной системы, то есть имеющие собственные виртуальные адресные пространства для статических и динамических данных. В мультипрограммной среде управление такими процессами тесно связано с управлением и защитой памяти, поэтому переключение процессора с выполнения одного процесса на выполнение другого является достаточно дорогой операцией. В дальнейшем, используя термин процесс будем подразумевать полновесный процесс.
Легковесные процессы, называемые еще как нити или сопрограммы, не имеют собственных защищенных областей памяти. Они работают в мультипрограммном режиме одновременно с активировавшей их задачей и используют ее виртуальное адресное пространство, в котором им при создании выделяется участок памяти под динамические данные (стек), то есть они могут обладать собственными локальными данными. Нить описывается как обычная функция, которая может использовать статические данные программы. Для одних операционных систем можно сказать, что нити являются некоторым аналогом процесса, а в других нити представляют собой части процессов. Таким образом, обобщая можно сказать – в любой операционной системе понятие «процесс» включает в себя следующее:
-
исполняемый код;
-
собственное адресное пространство, которое представляет собой совокупность виртуальных адресов, которые может использовать процесс;
-
ресурсы системы, которые назначены процессу ОС;
-
хотя бы одну выполняемую нить.
При этом подчеркнем – понятие процесса может включать в себя понятие исполняемой нити, т. е. однонитевую организацию – «один процесс – одна нить». В данном случае понятие процесса жестко связано с понятием отдельной и недоступной для других процессов виртуальной памяти. С другой стороны, в процессе может несколько нитей, т. е. процесс может представлять собой многонитевую организацию.
Нить также имеет понятие контекста – это информация, которая необходима ОС для того, чтобы продолжить выполнение прерванной нити. Контекст нити содержит текущее состояние регистров, стеков и индивидуальной области памяти, которая используется подсистемами и библиотеками. Как видно, в данном случае характеристики нити во многом аналогичны характеристикам процесса. С точки зрения процесса, нить можно определить как независимый поток управления, выполняемый в контексте процесса. При этом каждая нить, в свою очередь, имеет свой собственный контекст.
Принципы организации свопинга.
Проблема планирования определяет эксплуатационные качества системы. Это планирование времени, памяти. Это организация стратегий очередей. Планирование дает тип ОС. Рассмотрим ОС разделения времени. ОС разделения времени может быть с разными квантами времени, от чего меняются качества работы ОС. Большой квант времени – выполняются много мелких программ; маленький квант времени – многопользовательский режим работы. В ОС реального времени должна быть гарантия обработки времени за некоторое время.
Проблема организации свопинга. Мультипрограммные ОС используют свопинг. Элементом планирования является планирование свопинга. Пример: простейшая операционная система типа UNIX: полная откачка процесса в свопинговую память. Сейчас все делается по частям. Правила откачки: в контексте процесса была переменная p_time – время непрерывного размещения процесса в область свопинга и обратно. Сначала p_time обнулилась и считала время, сколько процесс находится в этой области. Затем по определению расписания в ОС запускалась функция обработки, которая анализировала область свопинга и выбирала процесс с максимальным p_time, затем система анализировала наличие свободной оперативной памяти. Если ее достаточно, то процесс в нее загружался, иначе операционная система смотрела процесс, который закрыт по обмену и имеет максимальный p_time, и его откачивала в область свопинга. Затем вновь анализ оперативной памяти, если недостаточно, то далее анализировались процессы в оперативной памяти, затем отыскивался процесс с максимальным p_time и освобождал память. Он мешал в последнюю очередь тем процессам, которые нормально читались, однако мешал процессу в обмене. Это лишает ОС возможности сразу закончить обмен. Это простейшая схема.
БИЛЕТ 23 Процесс в Unix