Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 глава.doc
Скачиваний:
21
Добавлен:
02.12.2018
Размер:
6.02 Mб
Скачать

Часть I. Общая нозология

ранного потенциала. При небольших потенциа­лах, существующих в живой клетке (70 мВ на цитоплазматической мембране и 175 мВ на внут­ренней мембране митохондрий), этого не проис­ходит, потому что барьер достаточно высок.

С ростом потенциала может наступить момент, когда в мембране начнут формироваться и расти поры и она будет разрушена. Такое явление но­сит название электрического пробоя мембраны.

Величина потенциала, при котором начинается электрический пробой, называется потенциалом пробоя и обычно обозначается как U* или <р*. Величина потенциала пробоя, несколько разли­чающаяся для мембран с разным составом бел­ков и липидов, может служить количественной мерой электрической стабильности мембраны. Чем стабильнее мембрана, тем выше потенциал, который ее «пробивает» (т. е. ср*) .

Электрическая прочность различных мем­бранных структур. Явление электрического про­боя мембран изучалось многими авторами на искусственных мембранах и отдельных клетках. Мембраны обладают определенным сопротивле­нием R электрическому току I, которое при не­большой разности потенциалов ц> между двумя сторонами мембраны является постоянной вели­чиной. Иными словами, для мембраны соблюда­ется закон Ома:

I =<р/Д.

Это означает, что зависимость между напря­жением на мембране ф и током через мембрану I - линейная. Однако такая зависимость сохраня­ется при сравнительно небольших величинах ср: обычно не выше 200-300 мВ. При определенной разности потенциалов на мембране (потенциале пробоя ф*) происходит резкое возрастание тока (рис. 14, Г). При постоянном мембранном по­тенциале, если он превышает критическое зна­чение, ток самопроизвольно нарастает во време­ни до полного разрушения мембраны.

На рис. 14 представлены результаты опыта на бислойных липидных мембранах. Аналогич­ные опыты были проведены на везикулярных мембранных структурах: фосфолипидных вези­кулах - липосомах, изолированных митохондри­ях и эритроцитах. В случае липосом и эритро­цитов потенциал на мембране создавался за счет разности концентраций проникающих ионов по сторонам мембраны, в случае митохондрий - за счет энергии окисления субстратов. Измерение мембранного потенциала осуществлялось различ­ными способами, например в случае митохонд­рий, - с помощью потенциалчувствительного флуоресцентного зонда. Явление пробоя мемб­ран наблюдалось во всех случаях. В табл. 11 приведены величины потенциалов пробоя мемб­ран всех этих объектов. Разумеется, потенциал пробоя во всех случаях выше потенциала, суще­ствующего на мембранах в живой клетке: иначе

Глава 3 / местные и общие реакции организма на повреждение

87

Таблица 11

Электрические потенциалы (мВ) на мембранах клеток и потенциалы пробоя модельных и биологических мембран (А.В. Путвинский, Т.В. Пучкова, О.М. Парнев, Ю.А. Владимиров)

Объект

Разность потенциалов на мембране в клетках

Потенциал пробоя

Липидный бислой

-

130-170 (БЛМ)

Клеточная мембрана

70 (нервные и мышечные клетки)

90-100 (эритроциты)

Внутренняя мембрана митохондрий

175 (митохондрии печени в присутствии субстратов и кислорода)

200

все мембраны пробились бы своим собственным потенциалом и клетка не могла бы существовать. Однако запас электрической прочности невелик: всего 20-30 мВ. Это означает, что при снижении прочности мембраны может произойти ее «са­мопробой» .

Электрический пробой как универсальный механизм нарушения барьерной функции мем­бран. Чрезвычайно важно, что электрическая прочность мембран, мерой которой служит по­тенциал пробоя, снижается под действием по­вреждающих факторов. Как уже говорилось, основными причинами нарушения барьерных свойств мембран при патологии являются: пе-рекисное окисление липидов, действие мемб­ранных фосфолипаз, механическое растяже­ние мембран или адсорбция на них некоторых белков. Изучение влияния этих действующих факторов на электрическую прочность мембран показало, что все они снижают потенциал про­боя мембран (рис. 15).

При повреждении мембранных структур про­исходит снижение потенциала пробоя ф* и мо­жет сложиться ситуация q>* < <р, когда мембрана будет «пробиваться» собственным мембранным потенциалом. К чему это приводит в условиях живой клетки? Предположим, клетку облучают

ультрафиолетовыми лучами, под влиянием ко­торых в липидных мембранах активируется пе-рекисное окисление. В неповрежденных мито­хондриях потенциал на мембране равен 175 мВ, а потенциал пробоя составляет около 200 мВ (см. табл. 11). В процессе активации перекисного окисления липидов потенциал пробоя начинает постепенно снижаться, и как только он достига­ет значения 175 мВ, мембрана митохондрий «про­бивается» собственным мембранным потенциа­лом. То же происходит и при активации фосфо­липаз: снижение потенциала пробоя до величи­ны, равной существующему на мембране потен­циалу, приводит к электрическому пробою мем­браны и потере ею барьерных свойств. В услови­ях эксперимента на эритроцитах и митохондри­ях было показано, что осмотическое растяжение мембраны и добавление чужеродных белков, так же как и действие перекисного окисления и фос-фолипазы, снижают потенциал пробоя мембран настолько, что они начинают «пробиваться» соб­ственным мембранным потенциалом.

Естествен вопрос, почему такие, казалось бы, разные воздействия, как перекисное окисление липидов, ферментативный гидролиз фосфолипид-ных молекул, механическое растяжение мемб­раны или адсорбция полиэлектролитов, приво-

88

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]