Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механика.docx
Скачиваний:
269
Добавлен:
02.12.2018
Размер:
4.01 Mб
Скачать

Передаточное отношение

При определении передаточного отношения планетарной пере­дачи используют метод остановки водила (метод Виллиса). По это­му методу всей планетарной передаче мысленно сообщают допол­нительно вращение с угловой скоростью водила ωh, но в обратном направлении. При этом водило как бы останавливается, а закреплен­ное колесо освобождается. Получается так называемый обращен­ный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом становятся промежуточными (паразитными) колесами, т.е. колесами, не влияющими на передаточное отношение механизма. Передаточное отношение в обращенном механизме оп­ределяют как в двухступенчатой передаче с одним внешним и одним внутренним зацеплением.

Здесь существенное значение имеет знак передаточного от­ношения. Передаточное отношение и считают положительным, ес­ли в обращенном механизме ведущее и ведомое звенья вращаются в одну сторону, и отрицательным, если в разные стороны. Так, для обращенного механизма передачи при ведущем колесе а и ведомом колесе b, см. рис. 98, имеем:

где через z обозначены числа зубьев соответствующих колёс

В рассматриваемом обращенном механизме знак минус показы­вает, что колеса g и b вращаются в обратную сторону по отноше­нию к колесу а.

С другой стороны, мысленная остановка водила при передаче движения от a к b равноценна вычитанию его угловой скорости ωh, из угловых скоростей колес. Тогда для обращенного механизма этой передачи

где (ωаh) и (ωb – ωh) - соответственно угловые скорости колес a и b относительно водила h; za и zb - числа зубьев колес a и b.

Верхний индекс (h) в обозначении передаточного отношения соответствует обозначению невращающегося звена, нижние (a и b) - соответственно ведущему и ведомому звеньям.

Таким образом, по формуле (15.1) вычисляют передаточное от­ношение для планетарной передачи, у которой неподвижно водило h(ωh = 0), колесо a является ведущим, колесо b - ведомым.

В планетарной передаче любое основное звено может быть ос­тановлено.

Для планетарной передачи, у которой колесо b закреплено в корпусе неподвижно (ωb = 0), колесо a является ведущим, а водило h - ведомым, из формулы (15.1) получим:

или

Отсюда следует

Для планетарной передачи, у которой колесо b закреплено в корпусе неподвижно (ωb = 0), водило h является ведущим, а колесо a - ведомым, имеем:

Таким образом, в зависимости от остановленного звена можно получить различные значения передаточного отношения планетар­ной передачи. Это свойство планетарных передач используют в ко­робках передач.

В планетарных передачах широко применяют внутреннее зубчатое зацепление с углом w = 30о.

Для обеспечения сборки планетарных передач необходимо соблюдать условие соосности (совпадение геометрических центров колёс); условие сборки (сумма зубьев центральных колёс кратна числу сателлитов) и соседства (вершины зубьев сателлитов не соприкасаются друг с другом).

Зубчатые колёса планетарных передач рассчитываются по тем же законам, что и колёса обычных цилиндрических передач.