- •Архаические буквы
- •Лекция №1 Общие принципы проектирования машин.
- •Лекция № 2. Основные показатели качества машин.
- •Мероприятия по уменьшению изнашивания:
- •Лекция № 3. Основные принципы и этапы разработки машин
- •Лекция № 4. Соединения деталей машин
- •Сварные соединения и их расчёт
- •Лекция № 5. Заклепочные соединения и их расчёт
- •Методика расчета заклепочных швов
- •Лекция № 6 паяные и клеевые соединения
- •Лекция № 7. Резьбовые соединения Деталей машин и их расчёт
- •Классы прочности и материалы резьбовых деталей
- •Силовые соотношения, условия самоторможения и к. П. Д. Винтовой пары.
- •Расчёт на прочность резьбовых соединений
- •Лекция № 8. Расчёт болтов, винтов и шпилек при действии статических нагрузок
- •III. Предварительно затянутый болт дополнительно нагружен внешней осевой растягивающей силой; последующая затяжка болта отсутствует или возможна.
- •Классы прочности и материалы резьбовых деталей
- •Лекция № 9. Шпоночные и шлицевые соединения
- •Соединения с сегментными шпонками
- •Шлицевые соединения
- •Лекция №10. Сопряжение деталей. Основы взаимозаменяемости. Допуски и посадки. Качество поверхности.
- •Соотношение между допуском и единицей допуска
- •Лекция №11. Соединение деталей посадкой с натягом Общие сведения
- •Оценка и область применения
- •Соединение посадкой на конус
- •Лекция №12. Передачи. Общие сведения о передачах Виды передач
- •Основные силовые и кинематические соотношения механических передач.
- •Лекция №13 фрикционные передачи и их расчёт.
- •Краткие сведения о контактных напряжениях
- •Характер и причины отказов под действием контактных напряжений
- •Кинематический и силовой расчеты
- •Лекция №13. Зубчатые передачи
- •Основы теории зубчатого зацепления
- •Эвольвента окружности.
- •Материалы зубчатых колёс, точность изготовления передач.
- •Причины отказов и виды расчётов зубчатых передач.
- •Действующая и расчётная нагрузка в передаче.
- •Расчётная схема и цель расчёта зубчатой передачи на усталостное выкрашивание зубьев.
- •Расчётная схема и цель расчёта зубчатой передачи на изгибную прочность зубьев.
- •Причины отказов и виды расчётов червячных передач.
- •Лекция №15 Планетарные и волновые зубчатые передачи. Передачи Новикова.
- •Передаточное отношение
- •Волновые зубчатые передачи
- •Характер и причины отказов деталей волновых передач
- •Зацепления новикова
- •Лекция №16. Виды ремённых передач, материалы ремней и шкивов.
- •Кинематика и геометрические параметры передачи.
- •Нагрузка на детали ремённой передачи.
- •Основные этапы расчёта ремённых передач:
- •Цепные передачи
- •Применение цепных передач.
- •Причины отказов и основы расчёта цепных передач.
- •Лекция №17. Валы и оси. Опоры валов и осей - подшипники. Муфты для соединения валов Назначение, материалы и конструирование валов и осей.
- •Критерии работоспособности и расчёт валов.
- •Этапы расчёта и проектирования вала:
- •Лекция № 18 Трение в механизмах и машинах
- •Лекция №19 Подшипники качения. Общие сведения и классификация
- •Подшипники скольжения - характеристика и расчёт.
- •Режимы работы и расчёт подшипников скольжения.
- •Лекция №20 муфты приводов Общие сведения
- •Расчетный момент
- •Глухие муфты
- •Жесткие компенсирующие муфты
- •Упругие муфты
- •Предохранительные муфты
- •Центробежные муфты
- •Обгонные муфты
- •Лекция №21 полиспасты
- •Канатные барабаны
- •Фрикционные барабаны (шпили)
- •Крепление конца каната на барабане
- •Расчёты барабанов
Кинематический и силовой расчеты
В связи с проскальзыванием ведомого колеса его окружная скорость v2 несколько меньше окружной скорости v1 ведущего. Зависимость между этими скоростями определяется формулой
v2 = ζv1 (12.16)
где ζ (дзета) — коэффициент, учитывающий упругое скольжение колес при деформации в тангенциальном направлении, изменяющийся от 0,995 для передач, работающих всухую, до 0,95 для вариаторов, работающих в масле при значительных передаточных отношениях.
В соответствии с формулами (12.1) и (12.10) следует, что
откуда

где d1 и ω1 — диаметр и угловая скорость ведущего колеса; d2 и ω2— диаметр и угловая скорость ведомого колеса; для конической фрикционной передачи; d1 и d2 — средние диаметры колес (рис. 81, б).
Таким образом, передаточное отношение ί фрикционной передачи с условно постоянным передаточным отношением (рис. 81, а, б) в соответствии с формулами (12.9) и (12.13)

где η — к. п. д. передачи; в зависимости от вида передачи η=0,7...0,95.
Для конической фрикционной передачи с углом взаимного расположения валов, равным 90° (см. рис. 81, б),

где α1 и α2 — углы наклона образующей конической поверхности соответственно ведущего и ведомого колес.
В силовых передачах ί ≤ 10, а в приборах с ручным приводом i ≤ 25.
Передаточное отношение вариатора изменяется от минимального imin до максимального imax значения.
Отношение максимальной угловой скорости ведомого колеса вариатора ω2max к минимальной угловой скорости ω2min называют диапазоном регулирования Д:

Передаточные отношения imax и imin и диапазон регулирования Д определяют следующим образом. Для простых вариаторов без промежуточного звена, у которых радиус ведущего колеса остается постоянным, а радиус ведомого колеса изменяется в пределах r2min ...r2max (рис. 81),


Для передачи окружной силы Ft колеса фрикционной передачи должны быть прижаты друг к другу с силой (см. рис. 81)

где β — коэффициент запаса сцепления колес; в силовых передачах машин β = 1,25...1,5, в передачах приборов β = 2,5...3; f— коэффициент трения между колесами, принимаемый для стали по стали в масле f = 0,04...0,05, для стали по стали или чугуну всухую f = 0,15...0,2, для стали по текстолиту всухую f = 0,2...0,3.
Лекция №13. Зубчатые передачи
Зубчатые передачи применяют для преобразования и передачи вращательного движения между валами с параллельными, пересекающимися и перекрещивающимися осями, а также для преобразования вращательного движения в поступательное и наоборот.
Зубчатые передачи между параллельными валами осуществляются цилиндрическими колесами с прямыми, косыми и шевронными зубьями (рис. 74, а—г). Передачи между валами с пересекающимися осями осуществляются обычно коническими колесами с прямыми и круговыми зубьями (рис. 74, а—з), реже тангенциальными зубьями (рис. 74, ж). Зубчатые передачи для преобразования вращательного движения в поступательное и наоборот осуществляются цилиндрическим колесом и рейкой (рис. 74, д).
Для валов с перекрещивающимися осями применяют зубчато-винтовые и червячные передачи.

Рис. 84. Основные виды зубчатых колес
Зубчатые передачи составляют наиболее распространенную и важную группу механических передач. Выпуск зубчатых колес в мире измеряется многими сотнями миллионов в год. Их применяют в широком диапазоне областей и условий работы: от часов и приборов до самых тяжелых машин, для передачи окружных сил от миллиньютонов до десятков меганьютонов, для моментов до 107 ньютонов на метр и мощностей от ничтожно малых до десятков тысяч киловатт, с диаметрами колес от долей миллиметра до 10 м и более.
Зубчатые передачи в сравнении с другими механическими передачами обладают существенными достоинствами, а именно:
а) малыми габаритами;
б) высоким КПД;
в) большой надежностью в работе;
г) постоянством передаточного отношения из-за отсутствия проскальзывания;
д) возможностью применения в широком диапазоне моментов, скоростей и передаточных отношений.
К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.
Эвольвентная система зацепления, получившая в технике ввиду своих бесспорных достоинств широчайшее распространение, имеет, однако, некоторые недостатки: а) малые приведенные радиусы кривизны рабочих поверхностей; б) повышенную в связи с линейным контактом зубьев чувствительность к перекосам: в) потери на трение в зацеплении в связи с существенным скольжением.
Каждое эвольвентное зубчатое колесо должно быть нарезано так, чтобы оно могло входить в зацепление с колесами того же модуля, имеющими любое число зубьев. Эвольвентное зацепление мало чувствительно к отклонениям межосевого расстояния. Эвольвентные зубчатые колеса могут нарезаться простым инструментом: они удобны для контроля.
