- •Архаические буквы
- •Лекция №1 Общие принципы проектирования машин.
- •Лекция № 2. Основные показатели качества машин.
- •Мероприятия по уменьшению изнашивания:
- •Лекция № 3. Основные принципы и этапы разработки машин
- •Лекция № 4. Соединения деталей машин
- •Сварные соединения и их расчёт
- •Лекция № 5. Заклепочные соединения и их расчёт
- •Методика расчета заклепочных швов
- •Лекция № 6 паяные и клеевые соединения
- •Лекция № 7. Резьбовые соединения Деталей машин и их расчёт
- •Классы прочности и материалы резьбовых деталей
- •Силовые соотношения, условия самоторможения и к. П. Д. Винтовой пары.
- •Расчёт на прочность резьбовых соединений
- •Лекция № 8. Расчёт болтов, винтов и шпилек при действии статических нагрузок
- •III. Предварительно затянутый болт дополнительно нагружен внешней осевой растягивающей силой; последующая затяжка болта отсутствует или возможна.
- •Классы прочности и материалы резьбовых деталей
- •Лекция № 9. Шпоночные и шлицевые соединения
- •Соединения с сегментными шпонками
- •Шлицевые соединения
- •Лекция №10. Сопряжение деталей. Основы взаимозаменяемости. Допуски и посадки. Качество поверхности.
- •Соотношение между допуском и единицей допуска
- •Лекция №11. Соединение деталей посадкой с натягом Общие сведения
- •Оценка и область применения
- •Соединение посадкой на конус
- •Лекция №12. Передачи. Общие сведения о передачах Виды передач
- •Основные силовые и кинематические соотношения механических передач.
- •Лекция №13 фрикционные передачи и их расчёт.
- •Краткие сведения о контактных напряжениях
- •Характер и причины отказов под действием контактных напряжений
- •Кинематический и силовой расчеты
- •Лекция №13. Зубчатые передачи
- •Основы теории зубчатого зацепления
- •Эвольвента окружности.
- •Материалы зубчатых колёс, точность изготовления передач.
- •Причины отказов и виды расчётов зубчатых передач.
- •Действующая и расчётная нагрузка в передаче.
- •Расчётная схема и цель расчёта зубчатой передачи на усталостное выкрашивание зубьев.
- •Расчётная схема и цель расчёта зубчатой передачи на изгибную прочность зубьев.
- •Причины отказов и виды расчётов червячных передач.
- •Лекция №15 Планетарные и волновые зубчатые передачи. Передачи Новикова.
- •Передаточное отношение
- •Волновые зубчатые передачи
- •Характер и причины отказов деталей волновых передач
- •Зацепления новикова
- •Лекция №16. Виды ремённых передач, материалы ремней и шкивов.
- •Кинематика и геометрические параметры передачи.
- •Нагрузка на детали ремённой передачи.
- •Основные этапы расчёта ремённых передач:
- •Цепные передачи
- •Применение цепных передач.
- •Причины отказов и основы расчёта цепных передач.
- •Лекция №17. Валы и оси. Опоры валов и осей - подшипники. Муфты для соединения валов Назначение, материалы и конструирование валов и осей.
- •Критерии работоспособности и расчёт валов.
- •Этапы расчёта и проектирования вала:
- •Лекция № 18 Трение в механизмах и машинах
- •Лекция №19 Подшипники качения. Общие сведения и классификация
- •Подшипники скольжения - характеристика и расчёт.
- •Режимы работы и расчёт подшипников скольжения.
- •Лекция №20 муфты приводов Общие сведения
- •Расчетный момент
- •Глухие муфты
- •Жесткие компенсирующие муфты
- •Упругие муфты
- •Предохранительные муфты
- •Центробежные муфты
- •Обгонные муфты
- •Лекция №21 полиспасты
- •Канатные барабаны
- •Фрикционные барабаны (шпили)
- •Крепление конца каната на барабане
- •Расчёты барабанов
Классы прочности и материалы резьбовых деталей
Стальные болты, винты и шпильки в соответствии с ГОСТ 1759—70** изготовляют 12 классов прочности. Классы прочности и материалы резьбовых деталей приведены в табл. 8.3.
Класс прочности обозначается двумя числами. Первое число, умноженное на 100, указывает минимальное значение предела прочности в МПа, второе, деленное на 10, указывает отношение предела текучести к пределу прочности, а, следовательно, их произведение, умноженное на 10, представляет собой предел текучести.
При стесненных габаритах выбирают резьбовые детали высоких классов прочности, что позволяет снизить массу узла. При опасности перекосов опорных поверхностей следует выбирать, болты из стали повышенной пластичности. Головки часто завинчиваемых и отвинчиваемых винтов, концы стопорных винтов планируют для получения высокой твердости. Сильно напряженные винты из легированных сталей, а также среднеуглеродистой качественной стали подвергают улучшению или закалке. Термообработкой достигают повышения прочности винтов на 75 %.
Применяют механические способы упрочнения винтов — обкатку резьбы и переходного участка от головки к стержню.
В машинах, для которых решающее значение имеет уменьшение массы (самолеты), широко применяют винты из титановых сплавов (ВТ14, ВТ16). Масса винтов из титановых сплавов при одинаковых нагрузках вследствие меньшей плотности титана составляет 60 % от массы винтов из сталей.
Табл.8.3.
Механические характеристики материалов резьбовых деталей
|
Класс прочности болта |
σв МПа |
στ, МПа |
Марки стали |
||
|
min |
max |
Болт |
Гайка |
||
|
3.6 |
300 |
490 |
180 |
СтЗ; 10 |
Ст 3 |
|
4.6 |
400 |
550 |
240 |
20 |
Ст 3 |
|
5.6 |
500 |
700 |
300 |
30; 35 |
10 |
|
6.6 |
600 |
800 |
360 |
35;45;40Г |
15 |
|
8.8 |
800 |
1000 |
640 |
35Х; 38ХА; |
20; 35;45, |
|
10.9 |
1000 |
1200 |
900 |
40Г2; 40Х; 30ХГСА |
35Х; 38ХА |
Лекция № 9. Шпоночные и шлицевые соединения
Шпоночное соединение образуют вал, шпонка и ступица детали (колеса, шкива, звездочки и др.). Шпонка представляет собой стальной брус, устанавливаемый в пазы вала и ступицы.
Назначение шпоночных соединений - передача вращающего момента между валом и ступицей.
Достоинства шпоночных соединений - простота конструкции и сравнительно невысокая стоимость изготовления, легкость монтажа и демонтажа, вследствие чего их применяют во всех отраслях машиностроения.
Недостатки - невысокая нагрузочная способность; в большинстве случаев необходима ручная подгонка при установке шпонки в паз вала; шпоночные пазы ослабляют вал и ступицу насаживаемой на вал детали. Ослабление вала обусловлено не только уменьшением его сечения, но, главное, значительной концентрацией напряжений изгиба и кручения, вызываемой шпоночным пазом.
Призматическая шпонка представляет собой прямоугольную призму (рис. 46, а). Другие исполнения имеют закругление одного или двух торцов (рис. 46, б). Закругленные торцы шпонки облегчают установку ступицы детали на вал при незначительном несовпадении боковых поверхностей шпонки и паза в отверстии детали.


Рис.46.
Паз в ступице выполняют протяжкой или долбяком. Паз под шпонку на валу выполняют в единичном и мелкосерийном производстве концевой фрезой (рис. 47, а), в крупносерийном и массовом производстве - дисковой фрезой (рис. 47, б). Для паза, выполненного концевой фрезой, необходима ручная пригонка. Нарезание дисковой фрезой более производительно, а точность выполнения паза выше. Но паз имеет наклонный участок. Устанавливаемая на вал деталь может захватить шпонку, сместить ее до наклонного участка. Произойдет заклинивание. Поэтому шпонку необходимо крепить в пазу, например, винтами. Такое крепление применяют для направляющих шпонок, имеющих большую длину.
Установку шпонки в паз на валу выполняют с натягом. Глубина паза - 0,6 от высоты h шпонки. Выступающая часть шпонки входит в паз ступицы, устанавливаемой на вал детали. Призматическая шпонка не удерживает деталь от осевого смещения вдоль вала.
На рис. 47 показано поперечное сечение шпоночного соединения. Размеры призматических шпонок стандартизованы. В стандарте указаны для каждого диаметра d вала значения ширины b и высоты h шпонки, глубины паза на валу t1 и в ступице t2. Стандартизованы также длины l шпонок.
а) б)


Рис. 47.

Рис. 48.
Рабочими являются боковые, более узкие грани шпонок высотой h. При передаче вращающего момента с вала на деталь боковые (рабочие) поверхности шпонки испытывают действие напряжений смятия σсм, продольное сечение - действие напряжений среза τср. При расчетах на прочность принимают, что шпонка нагружена окружной силой 2·103 T/d, а напряжения смятия равномерно распределены как по высоте, так и по длине шпонки. Глубина врезания шпонки в вал такова, что на прочность достаточно рассчитать выступающую из вала часть высоты шпонки.
Основным критерием работоспособности шпоночных соединений является прочность. Шпонки выбирают по таблицам стандарта в зависимости от диаметра вала. Размеры шпонок и пазов подобраны так, что прочность шпонок на срез и изгиб обеспечена, если выполнено условие прочности на смятие, поэтому основной расчет шпоночных соединений — расчет на смятие.
Режим работы, прочность материала деталей, характер их сопряжения учитывают при выборе допускаемых напряжений.
Соединения с призматическими шпонками проверяют по условию прочности на смятие:

где Τ — вращающий момент, Нм; d — диаметр вала, мм; k = h-t1 -выступающая из вала часть шпонки (глубина врезания шпонки в ступицу), мм; lp - расчетная длина шпонки, мм (см. рис. 41); [σ]см - допускаемое напряжение смятия, МПа.
При проектировочном расчете из условия прочности находят расчетную длину lp, мм, шпонки:

Полную длину l = (lp + b) с округлением до ближайшего значения определяют по стандарту. С целью уменьшения неравномерности распределения напряжений по высоте и длине шпонки длину соединения ограничивают: l ≤ 1,5d.
Условие прочности по напряжениям среза:
где
b
- ширина шпонки, мм; [τ]ср,
— допускаемые напряжения среза, МПа.
