
Гибридные интегральные микросхемы.
Конструктивной основой ГИМС является подложка из диэлектрического материала, на поверхности которой формируются пленочные элементы и межэлементные соединения. В качестве подложек применяют электровакуумные стекла, ситаллы, керамику и ряд других.
Как показано на рис. 1, конструктивно пленочный резистор состоит из резистивной пленки 1, имеющей определенную конфигурацию, и контактных площадок 2. Низкоомные резисторы имеют прямоугольную форму (рис. 1, а), высокоомные — форму меандра (рис. 1, б).
В
тонкопленочных ГИМС в качестве резистивных
материалов используются
Рис.2
металлы и их сплавы (тантал, хром, титан, нихром и др.), а также специальные резистивные материалы — керметы, которые состоят из частиц металла и диэлектрика. В толстопленочных ГИМС для изготовления резисторов используют резистивные пасты, наносимые на подложку через трафареты; эти пасты после термообработки превращаются в твердые пленки толщиной 20-40 мкм. Удельное поверхностное сопротивление пленок лежит в пределах от 100 до 10 000 Ом.
В большинстве случаев пленочный конденсатор представляет собой трехслойную структуру (рис. 2, а), состоящую из нижней (проводящей) обкладки 1, диэлектрической пленки 2 и верхней проводящей обкладки 3. В качестве обкладок тонкопленочного конденсатора используется алюминий, в качестве диэлектрика — монооксид германия или кремния, диоксид кремния, оксид тантала и др. В толстопленочных конденсаторах для создания обкладок используется проводящая паста, а для диэлектрика — диэлектрическая паста.
Пленочные индуктивности создают путем напыления металлической тонкой пленки в виде спирали, имеющей круглую или квадратную форму.
Пленочные проводники и контактные площадки предназначены для объединения элементов ГИМС в единую схему (рис. 3). В местах соединения пленочных проводников 1 с другими пленочными элементами, например резисторами 2, проводящие пленки образуют контактные переходы 3.
Рис.3.
Для присоединения внешних выводов микросхемы и выводов навесных элементов пленочные проводники заканчиваются контактными площадками 4. В тонкопленочных ГИМС для напыления проводящих пленок и контактных площадок используют золото, медь и алюминий. Для улучшения адгезии к подложке проводящую пленку напыляют на подслой хрома или нихрома, а для защиты от окисления проводящие пленки покрывают слоем никеля. В результате проводящие пленки оказываются трехслойными. В толстопленочных ГИМС для создания проводников и контактных площадок применяют проводящие пасты.
В ряде случаев в ГИМС применяют навесные элементы: резисторы, конденсаторы, трансформаторы и т. д., имеющие гибкие или жесткие выводы. Установка этих элементов осуществляется на подложке с помощью клея. Присоединение выводов к контактным площадкам производится путем пайки или сварки.
В качестве активных элементов в ГИМС применяют бескорпусные диоды, транзисторы и полупроводниковые ИМС, которые по способу их установки в микросхему разделяются на две группы: приборы с гибкими выводами и приборы с жесткими выводами. У компонентов с гибкими выводами (рис. 4, а) выводы сделаны из золотой проволоки диаметром 25 мкм и длиной 0,6-5,0 мм. Такие компоненты приклеиваются к подложке, а гибкие выводы соединяются с пленочными контактными площадками. Существенным недостатком таких конструкций является низкая производительность процесса сборки и невозможность автоматизировать этот процесс. Поэтому в современных ИМС используют активные компоненты с жесткими выводами. Существуют две разновидности таких элементов: с балочными выводами (рис. 4, б) и со сферическими выводами (рис. 4, в). Сферические выводы выполняются из золота, меди или сплавов и могут иметь форму шарика, цилиндра или усеченного конуса диаметром 0,05-2,0 мм.
Рис. 4
Установка таких транзисторов осуществляется методом перевернутого кристалла, при котором происходит непосредственное соединение сферически! выводов с контактными площадками, имеющими форму цилиндров диаметром 0,15-0,2 мм и высотой 10-15 мкм. Монтаж выполняется с помощью ультразвуковой или термокомпрессионной сварки. В транзисторах с балочными выводами жесткие выводы (балки) толщиной 10-15 мкм выступают за крап кристалла на 200-250 мкм, что облегчает процесс их присоединения к контактным площадкам.