
- •Оглавление
- •Закон Кулона. Экспериментальные проверки закона Кулона. Теорема Остроградского-Гаусса. Дифференциальная формулировка закона Кулона.
- •Классическая теория электропроводности и ее затруднения. Объяснение законов Ома, Джоуля-Ленца, Видемана-Франца на основе классической электронной теории.
- •Объяснение закона Джоуля-Ленца с точки зрения классической электронной теории
- •Закон взаимодействия элементов тока (закон Лапласа-Био-Савара-Ампера). Полевая трактовка закона взаимодействия элементов тока. Релятивистская природа магнитного поля.
- •Нахождение электрического поля с использованием потенциала, прямым применением закона Кулона и с использованием теоремы Гаусса.
- •Закон Био-Савара. Вектор магнитной индукции. Закон Ампера.
- •Закон Ампера
- •Зависимость электропроводимости от температуры, явление сверхпроводимости.
- •Емкость уединенного проводника. Система проводников. Конденсаторы и их емкость. Общая задача электростатики. Понятие о методе изображений для решения некоторых электростатических задач.
- •Теорема о циркуляции вектора магнитной индукции в стационарном случае. Вихревой характер магнитного поля.
- •Электростатическое поле при наличии диэлектриков. Поляризация. Связанные и свободные заряды. Электростатическая теорема Гаусса при наличии диэлектриков.
- •Неполярные диэлектрики
- •Полярные диэлектрики (hCl, h2o, co, hi, спирты, эфир и др.)
- •Понятие о зонной теории твердых тел. Расщепление энергетических уровней и образование зон. Энергетические зоны металлов, полупроводников и изоляторов.
- •Электрическое смещение и диэлектрическая проницаемость. Преломление силовых линий на границе раздела диэлектриков.
- •Собственная проводимость полупроводников. Примесная (электронная и дырочная) проводимость. Доноры и акцепторы. Температурная зависимость проводимости полупроводников.
- •Энергия электростатического поля. Энергия взаимодействия при непрерывном распределении зарядов. Собственная энергия.
- •Индукции токов в движущихся проводниках. Закон электромагнитной индукции Фарадея.
- •Объемная плотность энергии электрического поля. Энергия поля поверхностных зарядов. Энергия заряженных проводников.
- •Энергия заряженных проводников
- •Цепи квазистационарного переменного тока. Цепь с источником переменных сторонних эдс, сопротивлением, емкостью, и индуктивностью.
- •Силы в электрическом поле. Силы, действующие на точечный заряд, диполь и непрерывно распределенный заряд. Силы, действующие на диэлектрик и проводник. Энергетический метод определения сил.
- •Закон электромагнитной индукции Фарадея. Дифференциальная формулировка закона электромагнитом индукции Фарадея.
- •Энергия диполя во внешнем поле.Поле диполя
- •Метод векторных диаграмм и комплексных амплитуд.
- •Вращающееся магнитное поле. Принцип работы синхронных и асинхронных двигателей.
- •Электростатическое поле при наличии диэлектриков. Полярные диэлектрики. Зависимость их диэлектрической восприимчивости от температуры.
- •Работа и мощность переменного тока.
- •Основные сведения о сегнетоэлектриках, пьезоэлектриках, пироэлектриках.
- •Пьезоэлектрики
- •Сегнетоэлектрики (сегнетова соль, титанат бария)
- •Объяснение сегнетоэлектрических свойств
- •Резонанс напряжения в цепи переменного тока.
- •Электрическое поле при наличии постоянного тока. Уравнение непрерывности. Обобщенный закон Ома. Сторонние электродвижущие силы.
- •Характеристики тока.
- •I. Сторонние силы.
- •II. Обобщённый закон Ома.
- •Трансформаторы. Векторные диаграммы простейших случаев работы трансформатора.
- •Дифференциальная форма закона Джоуля-Ленца. Работа, совершаемая при прохождении тока, развиваемая мощность.
- •Основные сведения о трехфазном токе. Соединение звездой и треугольником.
- •Линейные цепи. Правила Кирхгофа. Методы анализа линейных цепей. Переходные процессы в цепи с конденсатором.
- •Токи Фуко. Скин-эффект и его использование в технике.
- •Контактные явления. Законы Вольта. Контактная разность потенциалов.
- •Фильтры низких и высоких частот, основные характеристики и физические принципы их реализации.
- •Выпрямляющее действие полупроводникового контакта Полупроводниковый диод и транзистор
- •Движение заряженных частиц в электрических и магнитных полях.
- •Термоэлектродвижущая сила, эффект Пельтье и эффект Томсона.
- •Ускорители заряженных частиц. Определение удельного заряда электрона и ионов.
- •Механизм электропроводности электролитов. Зависимость их электропроводимости от температуры. Электролиз. Законы Фарадея.
- •Электропроводность газов. Основные типы газового разряда. Плазменное состояние вещества.
- •Энергия магнитного поля контуров с током. Энергия магнитного поля при наличии магнетиков.
- •Термоэлектронная эмиссия.
- •Плотность энергии магнитного поля. Индуктивность. Энергия магнетика во внешнем магнитном поле.
- •Закон сохранения энергии для электромагнитного поля.
- •Силы в магнитном поле. Силы, действующие на ток. Сила Лоренца. Силы и момент сил действующие на магнитный момент.
- •Ток смещения. Система уравнений Максвелла, физический смысл отдельных уравнений. Граничные условия. Материальные уравнения.
- •Объемные силы, действующие на несжимаемые магнетики. Вычисление сил из выражения для энергии.
- •Электромагнитные волны. Волновое уравнение.
- •Диамагнетики. Механизмы намагничивания. Природа диамагнетизма, ларморова прецессия.
- •Плотность потока электромагнитной энергии. Вектор Умова - Пойтинга. Движение электромагнитной энергии вдоль линий передач.
- •Парамагнетики. Механизмы намагничивания. Зависимость парамагнитной восприимчивости от температуры. Закон Кюри.
- •Колебательный контур, свободные незатухающие и затухающие электрические колебания.
- •Ферромагнетизм. Петля гистерезиса. Зависимость ферромагнитных свойств от температуры. Границы между доменами. Механизмы перемагничивания.
- •Колебательный контур, вынужденные электрические колебания.
- •Гиромагнитные эффекты. Соотношение между механическими и магнитными моментами атомов и электронов.
- •Электромагнитные взаимодействия в природе. Электромагнитное поле. Элементарный заряд и его свойства. Закон сохранения заряда.
- •Теорема о циркуляции векторов магнитного поля. Граничные условия для векторов магнитного поля.
- •Индуктивность. Явление самоиндукции. Взаимная индукция. Переходные процессы в цепи с индуктивностью. Взаимная индукция
- •Резонанс токов в цепи переменного тока.
-
Электрическое поле при наличии постоянного тока. Уравнение непрерывности. Обобщенный закон Ома. Сторонние электродвижущие силы.
-
Характеристики тока.
Электрический ток — упорядоченное движение электрических зарядов.
Заряды — носители тока:
-
в металлах и полупроводниках - электроны;
-
в электролитах и газах – положительный и отрицательный ионы.
При отсутствии электрического поля носители тока совершают хаотическое (тепловое) движение и через любую поверхность S проходит в обе стороны в среднем одинаковое количество носителей одного знака (IS = 0 — ток через поверхность S).
При включении поля на хаотическое движение носителей накладывается упорядоченное движение с некоторой средней скоростью υ (средняя дрейфовая или упорядоченная скорость).
Количественными характеристиками тока служат сила тока I и плотность тока j.
Так как электрический ток может быть распределён неравномерно по поверхности => вводим характеристику плотности тока j.
М
I
=
=
jn
= dI/dS =>
Зная
(
)
=> найти I через
поверхность S.
УРАВНЕНИЕ НЕПРЕРЫВНОСТИ.
Электрический ток является стационарным лишь при определенных условиях. Выясним эти условия.
Если ток нестационарный, т.е. I=f(t), то через замкнутую неподвижную поверхность, ограничивающую произвольный объем, может входить и выходить различное количество зарядов.
Тогда объемная плотность зарядов в этом
объеме:
Сила тока, определяется зарядом,
проходящим через поверхность в единицу
времени :
.
По закону сохранения заряда, скорость
изменения количества заряда внутри
объема и заряд, вышедший через поверхность
в единицу времени, в сумме должны
равняться нулю:
или
.
Используем, что :
и
.
Тогда:
- уравнение непрерывности в интегральной
форме или закон сохранения заряда при
наличии тока.
Физический смысл этого уравнения
в том, что убыль заряда в единицу времени
внутри замкнутой поверхности равна
потоку вектора плотности тока через
данную поверхность.
- уравнение непрерывности в дифференциальной
форме. Если ток стационарный, то
распределение зарядов в пространстве
неизменно, т.е.
Тогда:
или
- условие стационарности тока в
дифференциальном и интегральном виде.
Обобщённый закон Ома.
I. Сторонние силы.
Сторонняя электродвижущая сила совершает положительную работу по перемещению положительного заряда в сторону возрастания потенциала, т.е. против сил электростатического поля (вследствие сопротивления потенциал электростатического поля понижается, положительный заряд двигается от большего потенциала к меньшему => должны существовать участки, на которых “+” заряд движется от меньшего потенциала к большему ).
Сторонняя сила не может иметь электростатического происхождения т.к. электростатическое поле — потенциальное и А по замкнутому пути =0 и ток не мог бы существовать, т.к. он должен совершать работу для преодоления сопротивления проводника.