
- •Предмет физики
- •Структура физического познания.
- •Пространственно-временная область изучаемых физикой объектов
- •Физические теории
- •Раздел 1. Физические основы механики.
- •Глава 1. Кинематика.
- •§1.1. Система отсчета. Инерциальные системы отсчета. Принцип относительности.
- •§1.2. Кинематика материальной точки.
- •§1.3. Равномерное и равнопеременное движения.
- •§ 1.4. Кинематика вращательного движения.
- •§ 1.5. Краткие итоги главы 1.
- •Глава 2. Динамика материальной точки.
- •§ 2.1 .Задача динамики. Состояние материальной точки. Динамические характеристики движения.
- •§ 2.2. Законы Ньютона. Второй закон как уравнение движения.
- •§ 2.3. Силы в механике.
- •§ 2.4. Работа силы. Мощность.
- •§ 2.4. Механическая энергия.
- •§ 2.5. Краткие итоги главы 2
- •Глава 3.Законы сохранения в механике.
- •§ 3.1.Фундаментальный характер законов сохранения
- •§ 3.2. Закон сохранения импульса.
- •§ 3.3. Закон сохранения механической энергии
- •§ 3.4. Столкновения тел
- •Глава 4. Динамика вращательного движения.
- •§ 4.1. Кинетическая энергия вращающегося и катящегося тел
- •§ 4.2. Момент инерции
- •§ 4.3. Работа и мощность при вращательном движении. Момент силы относительно оси
- •§ 4.4. Уравнение динамики вращательного движения.
- •§ 4.5. Закон сохранения момента импульса
- •§ 4.6. Краткие итоги главы 4
- •Раздел 2. Молекулярная физика и термодинамика
- •Глава 5. Кинетическая теория
- •§ 5.1. Тепловое движение
- •§ 5.2. Основное уравнение кинетической теории газа
- •§ 5.3. Уравнение Клапейрона – Менделеева
- •§ 5.4. Молекулярно-кинетический смысл абсолютной температуры. Средняя энергия теплового движения молекулы
- •§ 5.5. Распределение Максвелла молекул газа по скоростям
- •§ 5.6. Барометрическая формула. Распределение Больцмана.
- •§ 5.7. Среднее число столкновений и средняя длина свободного пробега молекул.
- •§ 5.8. Выводы из главы 5.
- •Глава 6. Термодинамика.
- •§ 6.1. Тепловые процессы
- •§ 6.2. Первое начало термодинамики.
- •§ 6.3 Изопроцессы.
- •§ 6.4. Тепловая и холодильная машины
- •§ 6.5. Цикл Карно
- •§ 6.6. Энтропия.
- •§ 6.7. Второе начало термодинамики.
- •§ 6.8. Основные выводы главы 6.
- •Раздел 3. Электромагнетизм
- •Глава 7. Электростатика
- •§7.1.Электрический заряд. Закон Кулона.
- •§7.2. Электрическое поле. Напряженность.
- •§ 7.3. Теорема Гаусса.
- •§ 7.4. Потенциал и работа электростатического поля.
- •§ 7.5. Связь напряженности и потенциала электростатического поля.
- •§ 7.6.Электростатическое поле в веществе.
- •§ 7.7. Электроемкость. Конденсатор.
- •§ 7.8. Энергия электрического поля.
- •Глава 8. Постоянный электрический ток.
- •§ 8.1. Электрический ток: сила тока, плотность тока
- •§ 8.2. Механизм электропроводности
- •§ 8.3. Законы постоянного тока.
- •§ 8.4. Работа и мощность тока
- •Глава 9. Магнитное поле тока
- •§ 9.1 Магнитное взаимодействие. Магнитное поле
- •§ 9.2. Закон Био-Савара-Лапласа
- •9.3. Вихревой характер магнитного поля.
- •§ 9.4. Действие магнитного поля на токи и движущиеся электрические заряды
- •§ 9.5. Магнитное поле в веществе
- •Глава 10. Явление электромагнитной индукции
- •§ 10.1. Основной закон электромагнитной индукции
- •§ 10.2. Самоиндукция и взаимная индукция
- •§ 10.3. Энергия магнитного поля
- •§ 10.4. Вихревое электрическое поле. Уравнения Максвелла
Физические теории
Физическая теория, отражающая определенный объем знаний о мире, имеет определенную область применимости. Ее границы уточняются по мере накопления новых знаний. Их появление приводит к формированию новой физической теории, которая не отменяет предыдущую, а четко обозначает ее границы применимости и включает ее в новую теорию как частный случай. Уравнения новой теории в определенном предельном переходе превращаются в уравнения предыдущей теории. Это утверждение называется принципом соответствия.
Все современные физические знания можно разделить на две теории: классическую и квантовую. Количественной границей между ними является фундаментальная физическая константа – постоянная Планка h=6,625.10-34 Дж.с. Она называется квантом действия, так как ее размерность соответствует произведению массы на скорость и на длину: mvr, где m-масса частицы, v – скорость ее движения, r – линейные размеры области движения. Частица называется классической и подчиняется законам классической физики, если mvr >>h. Частица называется квантовой и подчиняется законам квантовой физики при выполнении условия mvrh. Для классической частицы описывающие ее величины, имеющие размерность кванта действия, выражаются числами, по сравнению с которыми численное значение постоянной Планка столь мало, что им можно пренебречь и считать равным нулю. Если в квантовых уравнениях численное значение постоянной Планка принять равным нулю, то эти уравнения приобретают вид аналогичных им классических.
Каждая теория – классическая и квантовая подразделяются в зависимости от скорости движения изучаемых объектов на нерелятивистскую (v<<c) и релятивистскую (v≤c). Для них выполняется тот же принцип соответствия. Релятивистские уравнения в предельном случае v<<c, когда можно принять v/c=0, превращаются в свои нерелятивистские аналоги.
Таким образом, в современной физике можно выделить четыре теории: I – классическая нерелятивистская, опирающаяся на законы Ньютона; II - классическая релятивистская, являющаяся теорией относительности Эйнштейна; Ш – квантовая нерелятивистская, выражением которой является уравнение Шредингера; IV – квантовая релятивистская, выражаемая уравнением Дирака. Схематически это выглядит так:
Классическая физика ( mvr>>h)
|
|
I - нерелятивистская (v<<c) Механика Ньютона |
II – релятивистская (v≤c) Теория относительности Эйнштейна |
Квантовая физика (mvrh)
|
|
III - нерелятивистская (v<<c) Уравнение Шредингера
|
IV – релятивистская (v≤c) Уравнение Дирака
|
Все поле схемы условно представляет собой область применимости физических теорий, разделенную на четыре части. Стрелки на схеме указывают ту область, которая содержится как частный случай в области применимости той теории, на обозначении поля которой находится стрелка. Таким образом, раздел IV является самой полной физической теорией, применимой для любых классических и квантовых движений. Уравнения этого раздела физики одинаково успешно справятся с расчетом устройств как для наисовременнейших научных исследований (ускорителя заряженных частиц), так и с расчетом любого давно вошедшего в обиход технического устройства, например, автомобиля. Однако применение этих уравнений для расчета автомобиля нецелесообразно, так как их освоение требует значительно большего запаса базовых физико-математических знаний, а значит, и времени, нежели освоение раздела I –классической нерелятивистской физики. Инженерные задачи чаще всего связаны с классическим нерелятивистским движением, поэтому наиболее подробно в технических вузах изучают именно этот раздел физики. Изучение прочих разделов скорее носит ознакомительный характер. Однако, в современной технике используется немало физических явлений и материалов (например, фотоэффект, полупроводники), чей физический механизм объясняет квантовая физика.