
- •Оглавление
- •Введение.
- •Семинар №1 статистические методы обработки опытных данных
- •Вопросы для самоподготовки:
- •Мотивация цели
- •Подготовка к семинарскому занятию
- •Теоретические сведения
- •Основные понятия и формулы.
- •II. Основы теории ошибок и методы её практического применения для обработки экспериментальных данных
- •Абсолютная и относительная погрешности (ошибки).
- •Законы распределения случайных величин.
- •III. Расчет погрешности прямых измерений и доверительного интервала методом, основанным на определении средней квадратичной погрешности.
- •IV. Расчет погрешностей косвенных измерений.
- •3.Вычисляем абсолютные погрешности для каждого значения объёма:
- •V. Точность измерительных приборов.
- •VI. Графический метод представления результатов измерений.
- •VII. Упрощенный метод обработки результатов прямых измерений с использованием средней абсолютной погрешности.
- •Задачи для самостоятельного решения.
- •Решение.
- •Тесты для самоконтроля.
- •1 Уровень. Выберите номера правильных ответов.
- •Тесты 2-го уровня.
- •Семинар № 2 механические колебания и волны.
- •Вопросы для самоподготовки.
- •Подготовка к практическому занятию.
- •Теоретические сведения.
- •I. Основные понятия.
- •Основные законы теории колебаний и волн.
- •2.Затухающие колебания.
- •3. Вынужденные колебания. Резонанс. Автоколебания.
- •4.Механические волны.
- •5.Эффект Доплера.
- •Задачи для самостоятельного решения.
- •Образец решения задачи.
- •Тесты для самоконтроля.
- •1 Уровень. Выберите номера правильных ответов.
- •2 Уровень.
- •Семинар № 3 акустика. Звук, ультразвук и инфразвук.
- •Вопросы для самоподготовки
- •Мотивация цели
- •Звук. Виды звука.
- •2. Физические характеристики звука.
- •3. Характеристики слухового ощущения.
- •4. Закон Вебера-Фехнера.
- •5. Физика слуха: звукопроводящая и звукопринимающая части слухового аппарата. Теории Гельмгольца и Бекеши.
- •6. Звуковые методы исследования.
- •7. Ультразвук. Излучатели и приемники уз.
- •8.Особенности распространения уз-волны.
- •9. Действие ультразвука на вещество.
- •10. Использование уз в медицине.
- •11. Инфразвук (из) и его воздействие на человека.
- •12. Вибрации.
- •Задачи для самостоятельного решения.
- •Образец решения задачи.
- •Тесты самоконтроля.
- •1 Уровень. Выберите номера правильных ответов.
- •2 Уровень.
- •Семинар № 4 биоэнергетика и термодинамика биологических систем.
- •Вопросы для самоподготовки.
- •Мотивация цели.
- •Подготовка к практическому занятию.
- •Теоретические сведения.
- •I. Основные понятия.
- •II. Основные законы термодинамики.
- •1.Первое начало термодинамики.
- •2. Второе начало термодинамики.
- •3.Термодинамические функции.
- •4.Применение первого начала термодинамики в биологии.
- •5. Применение второго начала термодинамики в биологии. Уравнение Пригожина. Негэнтропия
- •6. Стационарное состояние биологической системы. Отличие стационарного состояния от равновесного. Теорема Пригожина.
- •7. Расширенный принцип Ле-Шатель. Адаптация и аутостабилизация живых систем. Типы перехода из одного стационарного состояния в другое.
- •Решите задачи.
- •Образец решения задачи. Условие задачи.
- •Тесты для самоконтроля.
- •1 Уровень. Выберите номера правильных ответов.
- •2 Уровень.
- •Семинар № 5 биофизика клетки. Физические механизмы переноса
- •Вопросы для самоподготовки.
- •1. Назначение цитоплазматических мембран.
- •2. Физические методы изучения ультраструктуры биологических мембран.
- •4. Модели биологических мембран
- •5. Перенос молекул (атомов) через мембраны, уравнение Фика.
- •7. Разновидности пассивного транспорта через мембрану.
- •8. Активный транспорт. Физический механизм активного транспорта.
- •9. Транспорт через сложные биологические мембраны. Опыт Уссинга.
- •Образцы решения задач
- •Задачи для самостоятельного решения.
- •Тесты для самоконтроля.
- •1 Уровень. Выберите номера правильных ответов.
- •2 Уровень
- •Семинар №6 рентгеновское излучение. Радиоактивность. Дозиметрия.
- •Вопросы для самоподготовки.
- •Основные формулы.
- •Задачи для самостоятельного решения.
- •Образцы решения задач.
- •Тесты для самоконтроля.
- •1 Уровень. Выберите номера правильных ответов.
- •2 Уровень
- •Литература
- •302 026, Г. Орел, ул. Комсомольская, 95, тел. (4862) 74-45-08
Образцы решения задач
Условие задачи 1.
Чему равна плотность потока формамида через плазматическую мембрану Chara ceratophylla толщиной 8 нм, если коэффициент диффузии составляет 1,4.10-8 см2с-1, концентрация формамида в начальный момент времени снаружи была равна 2.10-4 моль/л, а внутри в десять раз меньше?
Анализ условия задачи.
По условию задачи имеется плазматическая мембрана Chara ceratophylla. Известны концентрации частиц в мембране у ее внутренней и внешней поверхностях. Так как частицы не имеют заряд, то плотность потока формамида через мембрану можно определить с помощью уравнения диффузии (уравнения Фика).
cм
сн cм
вн
L
Запишем условие задачи и ее решение в символической форме.
Опред.
j
- ? СИ_________
Уравнение Фика
L = 8нм L= 8.10-9м j = -D. dc/dx
D = 1,4.10-8 см2 /с D = 1,4.10-12 м2 /с Учитывая малую толщину мембраны,
cм сн = 2.10-4 моль/л cм сн =0,2 моль/м3 можно считать, что концентрация
= 0,02 моль/ м3 молекул диффундирующего вещества,
т.е. формамида изменяется в ней
линейно. Поэтому градиент концентрации диффундирующего вещества будет равен:
dc/dx = (cм сн - cм вн)/L
Запишем выражение для плотности потока через мембрану
j = - D (cм сн - cм вн )/ L
Подставляем числовые значения, получаем
j = - 1,4.10-12 м2 /с (0,2 моль/ м3 - 0,02 моль/м3 )/8.10-9 м = -3,2.10-5 моль/ м2с
[j ]= [ м2 моль /с. м3• м] = [моль/ м2с]
Ответ: плотность потока формамида через мембрану составляет
j=-3,2.10-5 моль/ м2с
Условие задачи 2.
Для изучения структуры и функции биологических мембран используют модели – искусственные фосфолипидные мембраны, состоящие из бимолекулярного слоя фосфолипида, инкрустированного белками. Толщина искусственной мембраны l = 6нм. Найдите электроемкость 1 см2 такой мембраны, считая ее относительную диэлектрическую проницаемость εr =3.
Анализ условия задачи.
По условию задачи представленную модель можно считать плоским конденсатором, обкладками которого являются поверхностные белки, а роль диэлектрика выполняет липидный бислой. Следовательно, для определения электроемкости мембраны можно использовать формулу для определения емкости плоского конденсатора.
Запишем условие задачи и ее решение в символической форме.
О Представленную
по условию задачи модель биомембраны
можно считать плоским конденсатором,
обкладками которого служат поверхностные
белки и полярные головки фосфолипидов,
а диэлектриком неполярные хвосты
фосфолипидов.
S
= 1см2
S
= 10- 4
м2
l = 6 нм l =6.10-9 м
εr = 3.
εо = 8,84.10-12Ф/м.
Следовательно, определить электроемкость мембраны площадью S, можно используя формулу плоского конденсатора:
Подставим значения и вычислим С:
Ответ: электроемкость 1см2 искусственной мембраны
С=0,44 мкФ.