
- •Федеральное агенство по образованию
- •130201 - «Геофизические методы поисков разведки месторождений»
- •130504 – «Бурение нефтяных и газовых скважин»;
- •Тема: Механическое движение. Относительность движения. Система отсчета. Элементы кинематики материальной точки.
- •Тема: Преобразования координат Галилея. Классический закон сложения скоростей.
- •Тема: Механический принцип относительности. Скорость света. Постулаты Эйнштейна.
- •1. Пространство и время.
- •4. Следствия сто.
- •Релятивистский закон сложения скоростей
- •6. Релятивистская динамика. Связь между массой и энергией
- •Тема: Основная задача динамики. Сила. Масса. Законы ньютона. Закон всемирного тяготения. Гравитационное поле. Вес и невесомость.
- •Тема. Основные положения мкт. Размеры и масса молекул. Количество вещества. Опыт Штерна. Распределение молекул по скоростям.
- •Тема. Идеальный газ. Давление газа. Понятие вакуума. Основное уравнение идеального газа. Абсолютная температура.
- •1. Идеальный газ. Параметры состояния идеального газа.
- •2. Давление газа. Манометры.
- •3. Понятие о вакууме. Межзвездный газ.
- •1 Уравнение состояния идеального газа
- •2 Вывод уравнения состояния газа с переменными параметрами: массы, объема, давления и температуры.
- •Изопоцессы и их графики
- •5 Термодинамическая шкала температур. Абсолютный нуль.
- •Тема. Внутренняя энергия тела. Теплообмен и его виды. Уравнение теплового баланса. Первое начало термодинамики. Адиабатный процесс. Применение первого закона термодинамики.
- •1. Молекулярно-кинетический смысл температуры.
- •2. Что изучает термодинамика?
- •6. Применение I начала термодинамики к изопроцессам.
- •Тема. Второй закон термодинамики. Принцип действия тепловой машины. Кпд теплового двигателя. Охрана окружающей среды.
- •1. Обратимые и необратимые тепловые процессы.
- •2. Второе начало термодинамики.
- •3. Принцип действия тепловой машины. Кпд теплового движения.
- •Тема. Понятие фазы вещества. Насыщенный и ненасыщенный пар. Влажность воздуха. Точка росы. Кипение. Критическое состояние вещества. Сжижение газа.
- •6. Взаимодействие атмосферы и гидросферы.
- •7. Абсолютная и относительная влажность воздуха. Точка росы.
- •Тема. Кипение. Критическое состояние вещества. Сжижение газа.
- •1. Кипение. Зависимость температуры кипения от давления.
- •2. Критическое состояние вещества.
- •3. Сжижение газов и использование полученной жидкости в технике.
- •4. Понятие об атмосфере планет.
- •Тема: Кристаллическое и аморфное состояния вещества. Плавление и кристаллизация.
- •1. Кристаллическое состояние вещества. Дальний порядок.
- •2. Кристаллические и аморфные тела.
- •3. Типы кристаллических решеток.
- •Тема. Характеристика жидкого состояния вещества. Поверхностное натяжение. Смачивание. Капиллярность. Вязкость.
- •1. Характеристика жидкого состояния вещества.
- •2. Поверхностное натяжение.
- •3. Смачивание. Капиллярные явления.
- •4. Внутреннее трение в жидкости. Вязкость.
- •Тема. Плавление и кристаллизация. Сублимация. Диаграмма состояния вещества. Тепловое расширение тел.
- •1. Явления плавления и кристаллизации с точки зрения мкт.
- •Тема: Основы электронной теории строения атома. Понятие об электромагнитном поле и его частных проявлениях. Закон Кулона. Диэлектрическая проницаемость среды.
- •Тема: Электрическое поле и его напряженность. Принцип суперпозиции полей точечных зарядов. Графическое изображение полей точечных зарядов.
- •Тема: Работа по перемещению заряда, совершаемая силами электрического поля. Потенциал и разность потенциалов. Связь между напряженностью и разностью потенциалов.
- •Тема: Проводники и диэлектрики в электрическом поле. Электроемкость. Конденсаторы и их соединения. Энергия электрического поля.
- •Электроемкость проводника.
- •Конденсаторы и их соединение. Энергия электрического поля.
- •Тема: Физические основы проводимости металлов. Постоянный электрический ток, его характеристики. Условия, необходимые для возникновения тока.
- •Тема: Электродвижущая сила. Закон Ома для участка цепи и для замкнутой цепи. Параллельное и последовательное соединение проводников.
- •Параллельное и последовательное соединение проводников.
- •Тема: Сопротивление как электрическая характеристика резистора. Зависимость сопротивления резистора от температуры. Понятие о сверхпроводимости.
- •Тема: Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •1 Основные положения электронной теории проводимости металлов. Законы Ома и Джоуля-Ленца с точки зрения электронной теории.
- •2 Термоэлектричество. Контактная разность потенциалов и работа выхода.
- •Тема: Электрический ток в электролитах. Законы Фарадея для электролиза.
- •Тема: Несамостоятельный и самостоятельный разряды. Понятие плазмы. Электрический ток в вакууме.
- •1. Несамостоятельный и самостоятельный разряды.
- •2. Электрический ток в вакууме.
- •Что такое полупроводники и какими свойствами обладают?
- •2. Чистые полупроводники
- •3. Примесные полупроводник.
- •Тема: Магнитное поле и его основные характеристики. Действие магнитного поля на проводник с током. Закон Ампера.
- •Тема занятия: Магнитный поток. Действие магнитного поля на движущийся заряд. Сила Лоренца..
- •1. Магнитный поток. Работа магнитного поля.
- •2. Действие магнитного поля на движущийся заряд. Сила Лоренца. Определение удельного заряда.
- •Магнитные свойства вещества.
- •Тема :Электромагнитная индукция. Опыт Фарадея. Закон электромагнитной индукции. Правило Ленца. Вихревое электрическое поле. Роль магнитных полей в явлениях, происходящих на Солнце.
- •1 .История открытия явления электромагнитной индукции
- •2 .Опыты Фарадея
- •3 .Возбуждение эдс и индукционного тока.
- •4. Закон электромагнитной индукции.
- •5. Правило Ленца.
- •6. Понятие вихревого электрического поля.
- •7. Определение направлений напряженности электрического и магнитного вихревого полей.
- •8. Основные положения электромагнитной теории Максвелла.
- •Самоиндукция. Эдс самоиндукции.
- •Индуктивность соленоида (катушки).
- •Энергия магнитного поля тока.
- •Энергия электромагнитного поля.
- •Общая характеристика Солнца.
- •6 Роль магнитных полей в явлениях, происходящих в верхних слоях Солнца.
- •Тема : Самоиндукция. Эдс самоиндукции. Индуктивность. Энергия магнитного поля.
- •Самоиндукция. Эдс самоиндукции.
- •Индуктивность соленоида (катушки).
- •Энергия магнитного поля тока.
- •Энергия электромагнитного поля.
- •Общая характеристика Солнца.
- •6 Роль магнитных полей в явлениях, происходящих в верхних слоях Солнца.
- •1. Колебательное движение. Гармонические колебания и их характеристики.
- •2. Превращение энергии при колебательном движении.
- •3. Свободные, затухающие и вынужденные колебания.
- •4 Распространение колебаний в упругой среде. Волны, их характеристики.
- •Свободные электрические колебания. Колебательный контур.
- •2. Преобразование энергии в колебательном контуре:
- •3 Частота и период колебаний в контуре
- •4. Автоколебания. Генератор на транзисторе
- •Получение переменного тока – генератор.
- •2. Действующее значение эдс напряжения и силы переменного тока. Мощность переменного тока.
- •1. Электромагнитное поле и электромагнитная волна.
- •2. Изучение электромагнитных волн. Открытый колебательный контур.
- •3. Физические основы радиосвязи. Принцип радиосвязи.
- •4. Принципы радиосвязи.
- •1. Краткая история развития представлений о природе света.
- •2. Принцип Гюйгенса. Понятие фронта волн и светового луча.
- •3. Скорость распространения света в вакууме и различных средах. Понятие оптической плотности среды.
- •4. Световой поток и освещенность.
- •5. Законы освещенности.
- •6. Сравнение силы света двух источников. Фотометр. Люксметр.
- •7. Отражение света.
- •8. Преломление света.
- •Тема: Интерференция и дифракция света. Проявление их в природе и применение в технике. Понятие о поляризации.
- •Интерференция света.(т. Юнг 1801г; о ж. Френель 1815.)
- •Интерференция света в тонких пленках. Кольца Ньютона.
- •Интерференция света в природе, применение ее в технике.
- •Дифракция света. Дифракционная решетка.
- •Поляризация света.
- •Понятие о голографии.
- •Тема: Дисперсия света. Виды спектров. Цвета тел. Спектральный анализ. Фраунгоферовы линии в спектрах Солнца и звезд
- •1 Дисперсия света.
- •Поглощение света веществом. Цвета прозрачных и непрозрачных тел.
- •3 Излучение и спектры
- •Спектральный анализ.
- •4 Спектры Солнца и звезд.
- •Тема: Электромагнитное излучение в различных диапазонах длин волн: радиоволны, инфракрасное, видимое, ультрафиолетовое и рентгеновское излучения. Шкала электромагнитных волн
- •1. Тепловое излучение. Закон Кирхгофа для теплового равновесия.
- •2. Энергетическая светимость черного тела. Закон Стефана-Больцмана.
- •3. «Ультрафиолетовая катастрофа». Закон Вина.
- •4. Квантовая природа света. Квантовая гипотеза Планка. Энергия кванта.
- •5. Понятие внутреннего и внешнего фотоэффекта.
- •6. Опыты Столетова.
- •7. Законы внешнего фотоэффекта.
- •8. Уравнение Эйнштейна для фотоэффекта.
- •9. Внутренний фотоэффект.
- •Тема: Квантовые свойства света. Понятие о корпускулярно волновой природе света.
- •1 Опыты Резерфорда. Планетарная модель атома.
- •2 Сведения об атоме.
- •Постулаты Бора.
- •1 Радиоактивность.
- •Правило смещения.
- •Закон радиоактивного распада
- •Приборы, регистрирующие заряженные частицы.
- •Биологическое действие радиоактивных излучений.
- •Тема: Состав атомных ядер. Открытие позитрона и нейтрона. Ядерные силы. Дефект массы. Энергия связи атомных ядер.
- •Тема: Общие сведения об элементарных частицах. Античастицы. Взаимные превращения вещества и поля.
- •I. Понятие об элементарных частицах
- •Частицы и античастицы, аннигиляция взаимное превращение вещества и поля.
- •Тема: Термоядерный синтез и условия его осуществления. Баланс энергии при термоядерных реакциях. Проблема термоядерной энергетики. Ядра звезд как естественный термоядерный реактор.
Тема: Проводники и диэлектрики в электрическом поле. Электроемкость. Конденсаторы и их соединения. Энергия электрического поля.
-
Проводники в электрическом поле.
Проводник – вещество, имеющее свободные заряженные частицы.
В металлах это электроны; в электролитах это ионы.
Внутри проводника эти носители движутся хаотически. Если металлический проводник поместить в электрическое поле, то под действием этого поля электроны будут перемещаться в направлении, противоположном напряженности поля. Поле внутри проводника ослабляется. В результате смещения электронов на одном из концов проводника возникает избыток положительных зарядов, а на другом – избыток электронов.
И так, когда проводник попадает в электрическое поле, то он электризуется так, что на одном его конце возникает положительный заряд, а на другом – такой же по величине отрицательный заряд.
Перераспределение зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией.
Заряды перераспределяются таким образом, что напряженность поля внутри проводника равна нулю, а поверхность проводника являлась эквипотенциальной.
И так внутри проводника напряженности нет. На этом основана электростатическая защита.
2. Диэлектрики в электрическом поле.
Диэлектрики – вещества, в которых отсутствуют свободные заряженные частицы.
Все электрические заряды диэлектрика входят в состав его молекул и могут смещаться лишь на малые расстояния в пределах молекул и атомов.
Существуют полярные и не полярные диэлектрики.
Полярные диэлектрики – диэлектрики, состоящие из атомов и молекул у которых центры положительных и отрицательных зарядов каждой молекулы разделены даже в отсутствии поля.
Неполярные диэлектрики - диэлектрики, состоящие из атомов и молекул у которых центры положительных и отрицательных зарядов совпадают.
При внесении диэлектриков во внешнее электрическое поле происходит его поляризация, то есть появление на его поверхности связанных электрических зарядов.
Связанные электрические заряды на поверхности диэлектрика создают внутри него поле, направленное противоположно внешнему полю, электрическое поле внутри диэлектрика ослабляется.
Диэлектрическая проницаемость среды – физическая величина, показывающая во сколько раз модуль напряженности электрического поля внутри однородного диэлектрика меньше модуля напряженности поля и вакууме.
-
Электроемкость проводника.
Если взять проводник, изолированный от Земли, и не изменяя его расположение относительно других проводников, электризовать его, то заряд такого проводника изменяется прямо пропорционально потенциалу проводника.
Величина, характеризующая зависимость заряда наэлектризованного проводника от внешних условий, размеров и формы проводника, называется электропроводностью проводника.
Электроемкость проводника измеряется количеством электричества, нужного для повышения потенциала этого проводника на единицу.
Электроемкость
является характеристикой проводника
и определяет его способность накапливать
электрический заряд. Электропроводность
определяется отношением количеством
электричества к потенциалу.
,
где С электрическая емкость проводника,
в системе СИ электроемкость измеряется
в Фарадах.
Электроемкость проводника зависит от его формы и размеров, от диэлектрической проницаемости среды и присутствия других проводников; не зависит от материала проводника, его агрегатного состояния и величины заряда.
Электроемкость
шара определяется по формуле:
,
где С
электрическая емкость проводника, Ф;
ε0
= 8,85*10-12
кл2/Нм2=8,85*10-12Ф/м–
электрическая постоянная (фундаментальная
физическая постоянная); ε – относительная
диэлектрическая проницаемость среды.