- •Физический практикум по электричеству и магнетизму
- •Лабораторная работа №1 изучение электроизмерительных приборов
- •1. Краткая теория
- •2. Погрешности измерительных приборов. Класс точности
- •3. Устройство некоторых электроизмерительных приборов
- •4. Многопредельные приборы
- •5. Собственное сопротивление прибора
- •6. Пять золотых правил при работе с электроизмерительными приборами
- •7. Выполнение работы
- •1. Краткая теория
- •1.1. Измерение активных сопротивлений с помощью амперметра и вольтметра
- •1.2. Мост Уитстона постоянного тока
- •Контрольные вопросы
- •Краткая теория
- •1.1. Понятие разности потенциалов и э.Д.С.
- •Компенсационный метод измерения э.Д.С.
- •Принцип работы потенциометра пп-63
- •2. Описание потенциометра постоянного тока пп-63
- •3. Порядок выполнения работы
- •3.1. Измерение неизвестных напряжений
- •3.2. Измерение силы тока
- •3.3. Измерение сопротивлений
- •1. Краткая теория
- •1.1. Контактная разность потенциалов
- •1.2. Физические принципы работы дифференциальной термопары
- •2. Порядок выполнения работы
- •1. Краткая теория
- •2. Описание экспериментальной установки
- •3. Порядок выполнения работы
- •1. Краткая теория
- •1.1. Электростатическое поле. Напряженность поля
- •1.2. Потенциал
- •2. Метод исследования поля
- •3. Порядок выполнения работ
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №7 определение постоянной времени цепи, содержащей сопротивление и емкость
- •1. Краткая теория
- •Понятие квазистационарного тока
- •1.2. Процессы разрядки конденсатора
- •2. Описание экспериментальной установки
- •3. Выполнение работы
- •4. Обработка результатов измерений
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №8 проверка закона богуславского-ленгмюра для вакуумного диода и опредедение удельного заряда электрона
- •1. Краткая теория
- •1.1. Электрический ток в вакууме
- •1.2. Физические процессы в двухэлектродной лампе
- •1.3. Вольтамперная характеристика вакуумного диода
- •1.4. Закон Богуславского-Ленгмюра
- •1.5. Определение удельного заряда электрона
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №9 изучение температурной зависимости сопротивления металлов и полупроводников
- •1. Краткая теория
- •Электрическое сопротивление металлов
- •Температурная зависимость сопротивления металлов
- •Температурная зависимость сопротивления для полупроводников
- •2. Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №10 измерение индуктивности, емкости и проверка закона ома для переменного тока
- •1. Краткая теория
- •1.1. Активное сопротивление
- •1.2. Индуктивное сопротивление
- •1.3. Емкостное сопротивление
- •1.4. Последовательная rlc-цепочка
- •2. Важные частные случаи
- •3. Порядок выполнения работы
- •3.1. Упражнение 1. Измерение емкостного сопротивления и емкости конденсатора
- •3.2. Упражнение 2. Измерение активных и реактивных сопротивлений катушек индуктивности
- •3.2.1. Измерение активных сопротивлений катушек
- •3.2.2. Измерение реактивных сопротивлений и индуктивности катушек
- •3.3. Упражнение 3. Проверка закона Ома в последовательной rlc - цепи и определение ее полного сопротивления
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №11 мостовые методы измерения реактивных сопротивлений
- •1. Краткая теория
- •1.1.1. Мост Максвелла
- •1.1.2. L и c - мостики Уитстона
- •1.1.3. Мост Овена
- •1.1.4. Мост Вина
- •1.1.5. Резонансный мост
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №12 исследование явления резонанса в электрических цепях
- •1. Краткая теория
- •1.1. Резонанс напряжений
- •1.2. Резонанс токов
- •2. Метод измерений
- •3. Описание установки
- •4. Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 13 исследование магнитного поля соленоида
- •Краткая теория
- •1.1. Индукция магнитного поля
- •1.2. Магнитное поле на оси соленоида
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 14 снятие основной кривой намагничивания ферромагнетика и изучение зависимости магнитной проницаемости от напряженности магнитного поля
- •Краткая теория
- •1.1. Природа ферромагнетизма
- •2. Метод измерений
- •Описание установки
- •3. Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа №15 контактные явления в полупроводниках. Выпрямляющее действие p-n перехода
- •Краткая теория
- •Собственный полупроводник
- •Примесной полупроводник
- •Выпрямляющие свойства p-n перехода
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Обозначения на шкалах приборов
- •Основные сведения о лабораторном стенде юУрГу Основные правила техники безопасности при работе на стенде
1.2. Потенциал
Поскольку силы, действующие между зарядами, являются центральными, а поле центральных сил консервативно (работа по перемещению заряда из одной точки поля в другую не зависит от формы пути), можно наряду с напряженностью поля E ввести для описания поля величину φ, называемую потенциалом. Потенциал φ данной точки поля есть скалярная физическая величина, численно равная работе, которую совершает поле при перемещении единичного положительного заряда из данной точки поля в бесконечно удаленную, потенциал которой принимают за нуль:
(6.4)
Работа по перемещению заряда q из точки с потенциалом φ1 в точку с потенциалом φ2 будет равна q(φ1 - φ2).
Связь наряженности электрического плоля и потенциала определяется выражением:
E = - grad φ . (6.5)
Знак минус в формуле показывает, что вектор напряженности поля направлен в сторону, противоположную вектору градиента потенциала
При графическом изображении электрического поля наряду с силовыми линиями поля используются эквипотенциальные поверхности, которые получаются, если соединить все точки, обладающие одним и тем же потенциалом. Силовые линии ортогональны (перпендикулярны) эквипотенциальным поверхностям. В случае равномерно заряженной сферы, эквипотенциальные поверхности будут сферами, а силовые линии направлены по радиусам этих сфер. Электрическое поле, созданное между положительным зарядом и проводящей поверхностью показано на рис. 6.1. Примеры изображения других электростатических полей при различной конфигурации электродов можно найти в учебниках.

Рис. 6.1. Силовые линии и эквипотенциальные поверхности для электростатического поля между положительным зарядом
и проводящей поверхностью.
Исходя из свойств взаимной ортогональности силовых линий и эквипотенциальных поверхностей, можно по силовым линиям поля найти поверхности равного потенциала, и, наоборот, по положению эквипотенциальных поверхностей можно построить силовые линии поля. Если перемещать заряд вдоль любого направления по эквипотенциальной поверхности, то работа будет равна нулю.
2. Метод исследования поля
При конструировании многих электронных приборов требуется изучение электростатического поля в пространстве, заключенном между электродами. Изучить поле - это значит определить в каждой его точке значения Е и φ. Теоретический расчет Е и φ возможен лишь в случае полей, создаваемых электродами простой конфигурации. Сложные электростатические поля исследуют экспериментально.
Для изучения полей используют экспериментальные методы их моделирования. Один из них основан на применении слабопроводящей пластины с электродами. Электростатическое поле заменяют электрическим полем, в котором на электроды подают такие же потенциалы, как и в моделируемом поле. Несмотря на движение заряженных частиц, плотность зарядов на электродах постоянна, так как на место зарядов, уходящих по слабопроводящей пластинке, непрерывно поступают новые. Поэтому заряды электродов создают в пространстве такое же электрическое поле, как и неподвижные заряды той же плотности, а электроды являются эквипотенциальными поверхностями. Использование пластины позволяет применять токоизмерительные приборы, более простые и надежные в работе, чем электростатические.
При исследовании поля снимаем карту распределения потенциала, используя для измерения метод зонда. Электрический зонд представляет собой остроконечный проводник, который помещают в ту точку, где нужно измерить потенциал. В проводящей среде потенциал зонда равен потенциалу исследуемой точки поля.
Полученная картина эквипотенциальных поверхностей исследуемого поля позволяет провести силовые линии (ортогонально поверхностям) и вычислить значение модуля напряженности Е в любой точке. Вычисления усредненного значения напряженности на участке длины ∆n выполняются по формуле (6.6):
(6.6)
где φ1 и φ2 - потенциалы соседних эквипотенциальных поверхностей, ∆n - кратчайшее расстояние между ними (по нормали).
