
- •Биология
- •В двух книгах
- •В.Н. Ярыгин, в.И. Васильева, и.Н. Волков, в.В. Синелыцикова
- •Предисловие
- •Введение
- •1.2. Стратегия жизни. Приспособление, прогресс, энергетическое и информационное обеспечение
- •1.3. Свойства жизни
- •1.4. Происхождение жизни
- •1.5. Происхождение эукариотической клетки
- •1.6. Возникновение многоклеточности
- •1.7. Иерархическая система. Уровни организации жизни
- •1.8. Проявление главных свойств жизни на разных уровнях ее организации
- •1.9. Особенности проявления биологических закономерностей у людей. Биосоциальная природа человека
- •2.1. Клеточная теория
- •2.2. Типы клеточной организации
- •2.3. Структурно-функциональная организация эукариотической клетки
- •2.3.1. Принцип компартментации. Биологическая мембрана
- •2.3.2. Строение типичной клетки многоклеточного организма
- •2.3.3. Поток информации
- •2.3.4. Внутриклеточный поток энергии
- •2.3.5. Внутриклеточный поток веществ
- •2.3.6. Другие внутриклеточные механизмы общего значения
- •2.3.7. Клетка как целостная структура. Коллоидная система протоплазмы
- •2.4. Закономерности существования клетки во времени
- •2.4.1. Жизненный цикл клетки
- •2.4.2. Изменения клетки в митотическом цикле
- •Глава 3 структурно-функциональная организация генетического материала
- •3.1. Наследственность и изменчивость — фундаментальные свойства живого
- •3.2. История формирования представлений об организации материального субстрата наследственности и изменчивости
- •3.3. Общие свойства генетического материала и уровни организации генетического аппарата
- •3.4. Генный уровень организации генетического аппарата
- •3.4.1. Химическая организация гена
- •3.4.1.1. Структура днк. Модель Дж. Уотсона и ф. Крика
- •3.4.1.2. Способ записи генетической информации в молекуле днк. Биологический код и его свойства
- •3.4.2 Свойства днк как вещества наследственности и изменчивости
- •3.4.2.1. Самовоспроизведение наследственного материала. Репликация днк
- •3.4.2.2. Механизмы сохранения нуклеогидной последовательности днк. Химическая стабильность. Репликация. Репарация
- •3.4.2.3. Изменения нуклеотидных последовательностей днк. Генные мутации
- •3.4.2.4. Элементарные единицы изменчивости генетического материала. Мутон. Рекон.
- •3.4.2.5. Функциональная классификация генных мутаций
- •3.4.2.6. Механизмы, снижающие неблагоприятный эффект генных мутаций
- •3.4.3. Использование генетической информации в процессах жизнедеятельности
- •3.4.3.1. Роль рнк в реализации наследственной информации
- •3.4.3.2. Особенности организации и экспрессии генетической информации у про- и эукариот
- •3.4.4. Функциональная характеристика гена
- •3.4.5. Биологическое значение генного уровня организации наследственного материала
- •3.5. Хромосомный уровень организации генетического материала
- •3.5.1. Некоторые положения хромосомной теории наследственности
- •3.5.2. Физико-химическая организация хромосом эукариотической клетки
- •3.5.2.1. Химический состав хромосом
- •3.5.2.2. Структурная организация хроматина
- •3.5.2.3. Морфология хромосом
- •3.5.2.4. Особенности пространственной организации генетического материала в прокариотической клетке
- •3.5.3. Проявление основных свойств материала наследственности и изменчивости на хромосомном уровне его организации
- •3.5.3.1. Самовоспроизведение хромосом в митотическом цикле клеток
- •3.5.3.2. Распределение материала материнских хромосом между дочерними клетками в митозе
- •3.5.3.3. Изменения структурной организации хромосом. Хромосомные мутации
- •3.5.4. Значение хромосомной организации в функционировании и наследовании генетического аппарата
- •3.5.5. Биологическое значение хромосомного уровня организации наследственного материала
- •3.6. Геномный уровень организации наследственного материала
- •3.6.1. Геном. Генотип. Кариотип
- •3.6.2. Проявление свойств наследственного материала на геномном уровне его организации
- •3.6.2.1. Самовоспроизведение и поддержание постоянства кариотипа в ряду поколений клеток
- •3.6.2.2. Механизмы поддержания постоянства кариотипа в ряду поколений организмов
- •3.6.2.3. Рекомбинация наследственного материала в генотипе. Комбинативная изменчивость
- •3.6.2.4. Изменения геномной организации наследственного материала. Геномные мутации
- •3.6.3. Особенности организации наследственного материала
- •3.6.4. Эволюция генома
- •3.6.4.1. Геном предполагаемого общего предка про- и эукариот
- •3.6.4.2. Эволюция прокариотического генома
- •3.6.4.3. Эволюция эукариотического генома
- •3.6.4.4. Подвижные генетические элементы
- •3.6.4.5. Роль горизонтального переноса генетического материала в эволюции генома
- •3.6.5. Характеристика генотипа как сбалансированной по дозам системы взаимодействующих генов
- •3.6.5.1. Значение сохранения дозового баланса генов в генотипе для формирования нормального фенотипа
- •3.6.5.2. Взаимодействия между генами в генотипе
- •3.6.6. Регуляция экспрессии генов на геномном уровне организации наследственного материала
- •3.6.6.1. Общие принципы генетического контроля экспрессии генов
- •3.6.6.2. Роль негенетических факторов в регуляции генной активности
- •3.6.6.3. Регуляция экспрессии генов у прокариот
- •3.6.6.4. Регуляция экспрессии генов у эукариот
- •3.6.7. Биологическое значение геномного уровня организации наследственного материала
- •4.1. Молекулярно-генетические механизмы наследственности и изменчивости у человека
- •4.2. Клеточные механизмы обеспечения наследственности и изменчивости у человека
- •4.2.1. Соматические мутации
- •4.2.2. Генеративные мутации
- •Раздел III онтогенетический уровень организации живого
- •Глава 5 размножение
- •5.1. Способы и формы размножения
- •5.2. Половое размножение
- •5.2.1. Чередование поколений с бесполым и половым размножением
- •5.3. Половые клетки
- •5.3.1. Гаметогенез
- •5.3.2. Мейоз
- •5.4. Чередование гаплоидной и диплоидной фаз жизненного цикла
- •5.5. Пути приобретения организмами биологической информации
- •6.1.1. Модификационная изменчивость
- •6.1.2. Роль наследственных и средовых факторов в определении половой принадлежности организма
- •6.1.2.1. Доказательства генетического определения признаков пола
- •6.1.2.2. Доказательства роли факторов среды в развитии признаков пола
- •6.2. Реализация наследственной информации в индивидуальном развитии. Мультигенные семейства
- •6.3. Типы и варианты наследования признаков
- •6.3.1. Закономерности наследования признаков, контролируемых ядерными генами
- •6.3.1.1. Моногенное наследование признаков. Аутосомное и сцепленное с полом наследование
- •При моногенном наследовании
- •6.3.1.2. Одновременное наследование нескольких признаков. Независимое и сцепленное наследование
- •6.3.1.3. Наследование признаков, обусловленных взаимодействием неаллельных генов
- •6.3.2. Закономерности наследования внеядерных генов. Цитоплазматическое наследование
- •6.4.1. Наследственные болезни человека
- •6.4.1.1. Хромосомные болезни
- •6.4.1.2. Генные (или менделевские) болезни
- •6.4.1.3. Мультифакториальные заболевания, или болезни с наследственным предрасположением
- •6.4.1.4. Болезни с нетрадиционным типом наследования
- •Связанные с экспансией тринуклеотидных повторов
- •6.4.2. Особенности человека как объекта генетических исследований
- •6.4.3. Методы изучения генетики человека
- •6.4.3.1. Генеалогический метод
- •6.4.3.2. Близнецовый метод
- •6.4.3.3. Популяционно-статистический метод
- •6.4.3.4. Методы дерматоглифики и пальмоскопии
- •6.4.3.5. Методы генетики соматических клеток
- •6.4.3.6. Цитогенетичвский метод
- •6.4.3.7. Биохимический метод
- •6.4.3.8. Методы изучения днк в генетических исследованиях
- •6.4.4. Пренатальная диагностика наследственных заболеваний
- •6.4.5. Медико-генетическое консультирование
- •Глава 7 периодизация онтогенеза
- •7.1. Этапы. Периоды и стадии онтогенеза
- •7.2. Видоизменения периодов онтогенеза, имеющие экологическое и эволюционное значение
- •7.3. Морфофизиологические и эволюционные особенности яиц хордовых
- •7.4. Оплодотворение и партеногенез
- •7.5. Эмбриональное развитие
- •7.5.1. Дробление
- •7.5.2. Гаструляция
- •7.5.3. Образование органов и тканей
- •7.5.4. Провизорные органы зародышей позвоночных
- •7.6. Эмбриональное развитие млекопитающих и человека
- •7.6.1. Периодизация и раннее эмбриональное развитие
- •7.6.2. Примеры органогенезов человека, отражающих эволюцию вида
- •8.2. Механизмы онтогенеза
- •8.2.1. Деление клеток
- •8.2.2. Миграция клеток
- •8.2.3. Сортировка клеток
- •8.2.4. Гибель клеток
- •8.2.5. Дифференцировка клеток
- •8.2.6. Эмбриональная индукция
- •8.2.7. Генетический контроль развития
- •8.3. Целостность онтогенеза
- •8.3.1. Детерминация
- •8.3.2. Эмбриональная регуляция
- •8.3.3. Морфогенез
- •8.3.4. Рост
- •8.3.5. Интегрированность онтогенеза
- •8.4. Регенерация
- •8.5. Старость и старение. Смерть как биологическое явление
- •8.5.1. Изменение органов и систем органов в процессе старения
- •8.5.2. Проявление старения на молекулярном, субклеточном и клеточном уровнях
- •8.6. Зависимость проявления старения от генотипа, условий и образа жизни
- •8.6.1. Генетика старения
- •У различных видов млекопитающих животных
- •8.6.2. Влияние на процесс старения условий жизни
- •8.6.3. Влияние на процесс старения образа жизни
- •8.6.4. Влияние на процесс старения эндоэкологической ситуации
- •8.7. Гипотезы, объясняющие механизмы старения
- •8.8. Введение в биологию продолжительности жизни людей
- •8.8.1. Статистический метод изучения закономерностей продолжительности жизни
- •8.8.2. Вклад социальной и биологической компонент в общую смертность в историческом времени и в разных популяциях
- •9.2. Классификация врожденных пороков развития
- •9.3. Значение нарушения механизмов онтогенеза в формировании пороков развития
- •Рекомендуемая литература
- •Раздел I 8
- •Глава 1 8
- •Раздел II 35
- •Глава 2 36
- •Глава 3 60
- •Глава 4 186
- •Раздел III 206
- •Глава 5 206
- •Глава 6 226
- •Глава 7 293
- •Глава 8 350
- •Глава 9 441
- •Биология в 2 книгах Книга 1
- •26,46 Усл. Кр.-отт., 30,72 уч.-изд. Л. Тираж 8000 экз. Заказ №258.
- •127994, Москва, гсп-4, Неглинная ул., 29/14.
- •101990, Москва, Центр, Хохловский пер., 7-9, стр. 1-7.
6.3. Типы и варианты наследования признаков
Наследственная программа, на основе которой формируется фенотип организма, сосредоточена главным образом в его хромосомном наборе. Некоторое количество наследственного материала заключено также в цитоплазме клеток. Ядерные и цитоплазматические структуры в процессе клеточного размножения распределяются между дочерними клетками по-разному. Это касается не только соматических клеток организма, но и его гамет. В связи с этим передача ядерных и цитоплазматических генов потомству подчиняется разным закономерностям, что обусловливает особенности наследования соответствующих признаков.
6.3.1. Закономерности наследования признаков, контролируемых ядерными генами
Гены, расположенные в ядерных структурах — хромосомах, закономерно распределяются между дочерними клетками благодаря механизму митоза, который обеспечивает постоянную структуру кариотипа в ряду клеточных поколений (см. разд. 3.6.2.1). Мейоз и оплодотворение обеспечивают сохранение постоянного кариотипа в ряду поколений организмов, размножающихся половым путем (см. разд. 3.6.2.2). В результате набор генов, заключенный в кариотипе, также остается постоянным в ряду поколений клеток и организмов. Закономерное поведение хромосом в митозе, мейозе и при оплодотворении обусловливает закономерности наследования признаков, контролируемых ядерными генами.
6.3.1.1. Моногенное наследование признаков. Аутосомное и сцепленное с полом наследование
В связи с тем что кариотип организма — это диплоидный набор хромосом, большинство генов в соматических клетках представлены аллельными парами. Аллелъные гены, расположенные в соответствующих участках гомологичных хромосом, взаимодействуя между собой, определяют развитие того или иного варианта соответствующего признака (см. разд. 3.6.5.2). Являясь специфической характеристикой вида, кариотип представителей разного пола различается по паре половых хромосом (см. разд. 6.1.2.1).Гомогаметный пол, имеющий две одинаковые половые хромосомы XX, диплоиден по генам этих хромосом. Гетерогаметный пол имеет одинарный набор генов Х-хромосомы (ХО) или негомологичных участков Х- и Y-хромосом. Фенотипическое проявление и наследование отдельных признаков из поколения в поколение организмов зависит от того, в каких хромосомах располагаются соответствующие гены и в каких дозах они присутствуют в генотипах отдельных особей. Различают два основных типа наследования признаков: аутосомное и сцепленное с полом (схема 6.1).
Схема 6.1. Классификация типов наследования признаков
При моногенном наследовании
Аутосомное наследование. Характерные черты аутосомного наследования признаков обусловлены тем, что соответствующие гены, расположенные в аутосомах, представлены у всех особей вида в двойном наборе. Это означает, что любой организм получает такие гены от обоих родителей. В соответствии с законом чистоты гамет в ходе гаметогенеза все половые клетки получают по одному гену из каждой аллельной пары (рис. 6.6). Обоснованием этого закона является расхождение гомологичных хромосом, в которых располагаются аллельные гены, к разным полюсам клетки в анафазе I мейоза (см. рис. 5.6).
Рис. 6.6. Обоснование закономерностей аутосомного наследования признаков:
I — гаплоидные гаметы родителей, II — диплоидный генотип особи (фенотип зависит от взаимодействия аллельных генов Аа); III— гаплоидные гаметы гетерозиготной особи (гаметы «чисты», так как несут по одному из пары аллельных генов); черным и белым обозначены гомологичные хромосомы; буквами — определенные локусы
Ввиду того что развитие признака у особи зависит в первую очередь от взаимодействия аллельных генов, разные его варианты, определяемые разными аллелями соответствующего гена, могут наследоваться по аутосомно-доминантному или аутосомно-рецессивному типу, если имеет место доминирование. Возможен также промежуточный тип наследования признаков при других видах взаимодействия аллелей (см. разд. 3.6.5.2).
При доминировании признака, описанном Г. Менделем в его опытах на горохе, потомки от скрещивания двух гомозиготных родителей, различающихся по доминантному и рецессивному вариантам данного признака, одинаковы и похожи на одного из них (закон единообразия F1). Описанное Менделем расщепление по фенотипу в F2 в отношении 3:1 в действительности имеет место лишь при полном доминировании одного аллеля над другим, когда гетерозиготы фенотипически сходны с доминантными гомозиготами (закон расщепления в F2).
Рис. 6.7. Аутосомное наследование признака:
I — полное доминирование (наследование цвета лепестков у гороха); II — неполное доминирование (наследование цвета лепестков у ночной красавицы)
Наследование рецессивного варианта признака характеризуется тем, что он не проявляется у гибридов F1, а в F2 проявляется у четверти потомков (рис. 6.7.7).
В случаях формирования у гетерозигот нового варианта признака по сравнению с гомозиготами, что наблюдается при таких видах взаимодействия аллельных генов, как неполное доминирование, кодоминирование, межаллельная комплементация, гибриды F1 не похожи на родителей, а в F2 образуется три фенотипических группы потомков (рис. 6.7, II).
Завершая описание характерных черт аутосомно-доминантного и аутосомно-рецессивного наследования, уместно напомнить, что хотя в случае доминирования одного из аллелей присутствие в генотипе другого, рецессивного, аллеля не сказывается на формировании доминантного варианта признака, на фенотипическое проявление аллеля оказывает влияние вся система генотипа конкретного организма, а также среда, в которой реализуется наследственная информация. В связи с этим существует возможность неполной пенетрантности доминантного аллеля у особей, имеющих его в генотипе.
Рис. 6.8. Наследование признака окраски глаз у дрозофилы:
I, II — различие результатов скрещивания в зависимости от пола родителя с доминантным признаком; зачернены отцовские хромосомы
Сцепленное с полом наследование. Анализ наследования признака окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдельного типа наследования признаков сцепленное с полом наследование (рис. 6.8).
Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предположение, что ген, определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в Y-хромосоме. Все особенности сцепленного с полом наследования объясняются неодинаковой дозой соответствующих генов у представителей разного — гомо- и гетерогаметного пола.
Гомогаметный пол несет двойную дозу генов, расположенных в Х-хромосоме. Развитие соответствующих признаков у гетерозигот (ХAХa) зависит от характера взаимодействия между аллельными генами. Гетерогаметный пол имеет одну Х-хромосому (ХО или XY). У некоторых видов Y-хромосома генетически инертна, у других она содержит некоторое количество структурных генов, часть из которых гомологична генам Х-хромосомы (рис. 6.9). Гены негомологичных участков Х- и Y-хромосом (или единственной Х-хромосомы) у гетерогаметного пола находятся в гемизиготном состоянии. Они представлены единственной дозой: ХAY, ХaХ, XYB. Формирование таких признаков у гетерогаметного пола определяется тем, какой аллель данного гена присутствует в генотипе организма.
Характер наследования сцепленных с полом признаков в ряду поколений зависит от того, в какой хромосоме находится соответствующий ген. В связи с этим различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.
Х-сцепленное наследование. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную Х-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству.
У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям (рис. 6.10).
Так как у гомогаметного пола признак развивается в результате взаимодействия аллельных генов, различают Х-сцепленное доминантное и Х-сцепленное рецессивное наследование. Х-сцепленный доминантный признак (красный цвет глаз у дрозофилы) передается самкой всему потомству. Самец передает свой Х-сцепленный доминантный признак лишь самкам следующего поколения. Самки могут наследовать такой признак от обоих родителей, а самцы — только от матери.
в половых хромосомах человека:
I — Х-хромосомы: заштрихованы локусы, отсутствующие в Y-хромосоме (красно-зеленая слепота, гемофилия и др.); II — Y-хромосома: заштрихованы локусы, отсутствующие в Х-хромосоме (перепонки между пальцами, гены-детерминаторы развития организма по мужскому типу); участки Х- и Y-хромосом, соответствующие гомологичным локусам, не заштрихованы
Рис. 6.10. Обоснование закономерностей сцепленного с полом
наследования признаков:
I — сочетание половых хромосом в кариотипе представителей разного пола; II — гомогаметный пол образует один тип гамет, гетерогаметный — два; III — представители гомогаметного пола получают хромосомы от обоих родителей; представители гетерогаметного пола получают Х-хромосому от гомогаметного родителя, а Y-хромосому — от гетерогаметного родителя; это справедливо для генов, расположенных в негомологичных локусах Х- и Y-хромосом; зачернены отцовские хромосомы
Х-сцепленный рецессивный признак, (белый цвет глаз у дрозофилы) у самок проявляется только при получении ими соответствующего аллеля от обоих родителей (XaXa). У самцов XaY он развивается при получении рецессивного аллеля от матери. Рецессивные самки передают рецессивный аллель потомкам любого пола, а рецессивные самцы —только «дочерям» (см. рис. 6.8).
При Х-сцепленном наследовании, так же как и при аутосомном, возможен промежуточный характер проявления признака у гетерозигот. Например, у кошек пигментация шерсти контролируется Х-сцепленным геном, разные аллели которого определяют черную (XA и рыжую (XA’) пигментацию. Гетерозиготные самки XAXA’ имеют пеструю окраску шерсти. Самцы же могут быть либо черными (XAY, либо рыжими (XA’Y).
Голандрическое наследование. Активно функционирующие гены Y-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («волосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну.