
- •Isbn 5-7723-0716-9 Севмашвтуз, 2007
- •4.2 Контрольная работа №2 100
- •1 Основные понятия теории машин и механизмов
- •1.1 Основные понятия и определения
- •1.1.1 Классификация деталей машин
- •1.1.2 Проектирование и конструирование
- •1.1.3 Основные требования к конструкции деталей машин.
- •1.1.4 Общие рекомендации при проектировании
- •1.1.5 Особенности расчетов при проектировании
- •1.1.6 Порядок проектирования
- •1.2 Краткие сведения о машиностроительных материалах
- •1.3 Краткие сведения о стандартизации и взаимозаменяемости деталей машин, допусках и посадках
- •2 Соединения деталей машин
- •2.1 Резьбовые соединения
- •2.1.1 Общие сведения
- •2.1.2 Классификация резьб
- •2.1.3 Геометрические параметры резьбы
- •2.1.4 Основные типы резьб
- •2.1.5 Основные параметры резьбы
- •2.1.6 Силы в резьбе
- •2.1.7 Крепежные детали
- •2.1.8 Материалы и степень точности крепежных деталей
- •2.1.9 Расчет резьбовых соединений
- •2.1.10 Расчет групповых резьбовых соединений
- •2.2 Заклепочные соединения
- •2.2.1 Общие сведения
- •Достоинства заклепочных соединений:
- •Недостатки заклепочных соединений:
- •Область применения заклепочных соединений:
- •2.2.2 Конструкция заклепок
- •2.2.3 Материалы заклепок
- •2.2.4 Конструкция заклепочных соединений
- •2.2.5 Расчет заклепочных соединений
- •2.3 Сварные соединения
- •2.3.1 Общие сведения
- •2.3.2 Типы сварки:
- •2.3.3 Достоинства сварных соединений:
- •2.3.4 Виды сварных соединений
- •2.3.5 Расчет сварных соединений
- •2.3.5.2 Угловые соединения
- •2.3.6 Допускаемые напряжения
- •2.4 Соединения с натягом
- •2.4.1 Общие сведения
- •2.4.2 Достоинства и недостатки соединений с натягом
- •2.4.3 Способы получения соединений с натягом
- •2.4.4 Расчет соединений с натягом
- •2.5 Шпоночные соединения
- •2.5.1 Общие сведения
- •2.5.2 Достоинства и недостатки шпоночных соединений
- •2.5.3 Виды шпоночных соединений
- •2.5.4 Материал шпонок и допускаемые напряжения
- •2.6 Шлицевые соединения
- •2.6.1 Общие сведения
- •2.6.2 Достоинства и недостатки шлицевых соединений
- •2.6.3 Виды шлицевых соединений
- •2.6.4 Расчет шлицевых соединений
- •3 Винтовые механизмы
- •3.1 Общие сведения
- •3.1.2 Область применения винтовых механизмов:
- •3.2 Конструкция винтов и гаек
- •3.3 Материалы винтов и гаек
- •3.4 Расчет передачи «винт-гайка»
- •3.4.1 Расчет на износостойкость
- •3.4.2 Проверка на самоторможение
- •3.4.3 Выбор конструкции пяты
- •3.4.4 Расчет прочности винта
- •3.4.5 Проверка винта на устойчивость
- •3.4.6 Определение размеров гайки
- •4.2 Контрольная работа №2
- •3. Проверка на самоторможение.
- •10. Расчет параметров передачи
- •Список литературы
- •Бабкин Александр Иванович
- •Сдано в производство 04.09.2007 г. Подписано в печать 19.09.2007 г.
- •164500, Г. Северодвинск, ул. Воронина, 6.
3.2 Конструкция винтов и гаек
Основные элементы любой винтовой пары это винт и гайка.
Винты представляют собой стержни с нанесенной на них резьбой (рис. 3.1). Концевые участки винтов имеют участки, предназначенные для крепления других элементов винтовой пары (например, рукояток, маховиков и т.д.) или для установки винта в опорах. Длинные винты делают составными.
|
Рис. 3.1. Примеры конструкции ходовых винтов: а) винт прижимного устройства; б) винт домкрата; в) винт натяжного устройства |
Гайки представляют собой втулки с внутренней резьбой и фланцем для осевого крепления (рис. 3.2а). Иногда гайки выполняют разрезными (рис. 3.2б).
|
Рис. 3.2. Гайки винтовых механизмов |
Для винтовых механизмов применяют резьбы с малыми углами профиля для уменьшения потерь на трение. Наиболее распространена трапецеидальная резьба со средними шагами (рис. 3.3а).
|
|
а |
б |
Рис. 3.3. Профили трапецеидальной а) и упорной б) резьб |
Для высоконагруженных винтов домкратов и других механизмов с односторонним действием нагрузки целесообразно применять упорную резьбу (рис. 3.3б). Потери на трение в упорной резьбе меньше чем в трапецеидальной, но она имеет более сложный профиль.
Прямоугольная резьба обладает еще более низкими потерями на трение, но применяют ее редко. Недостатком прямоугольной резьбы является трудность изготовления, т.е. невозможность окончательной обработки фрезерованием и шлифованием.
Иногда, в порядке исключения, применяется метрическая резьба для винтовых механизмов с малой нагрузочной способностью (небольшие струбцины) или в измерительных инструментах (например, микрометры).
Основные геометрические параметры резьбы подробно представлены в разделе 2.1 «Резьбовые соединения».
3.3 Материалы винтов и гаек
Материалы винтов должны обладать высокой износостойкостью, хорошей обрабатываемостью, высокой прочностью. Таким требованиям лучше всего отвечают стали. Для слабонапряженных и тихоходных винтов применяют стали 45, 50 (ГОСТ 1050-88), для более ответственных механизмов – стали, подвергаемые закалке – 40Х, 40ХГ (ГОСТ 4543-71), 65Г (ГОСТ 1050-88), для ходовых винтов станков – азотируемые стали 40ХФА, 18ХГТ (ГОСТ 4543-71).
Поскольку в ходовых винтовых парах присутствует скольжение, для уменьшения трения гайки делают из антифрикционных материалов – оловянных бронз БрО10Ф1, БрО6Ц6С3 (ГОСТ 613-79), безоловянной бронзы БрА9Ж3Л (ГОСТ 493-79), чугунов СЧ 12-28, СЧ 15-32, СЧ 18-36 (ГОСТ 1412-70). В отдельных случаях возможно изготовление гайки из стали. Следует иметь в виду, что антифрикционные свойства у бронзы улучшаются с увеличением содержанием олова, а у чугуна – с уменьшением прочности. Кроме того, следует учитывать, что самый дешевый материал – чугун, а стоимость бронзы тем выше, чем больше содержание олова.
3.4 Расчет передачи «винт-гайка»
3.4.1 Расчет на износостойкость
Расчет диаметра
винта и выбор резьбы осуществляется
из условия
износостойкости,
т.к. в винтовых механизмах основной
причиной выхода их из строя является
износ резьбы гайки. Чтобы ограничить
износ, контактное напряжение в витках
резьбы
не должно превышать предельно допустимого
давления
.
Иногда это условие называют условием
невыдавливания смазки.
,
где
– расчетная нагрузка, действующая на
винт,
– площадь
поверхности витков гайки:
,
где
– число витков гайки,
– средний диаметр
резьбы,
– высота профиля
резьбы:
,
где
– коэффициент рабочей высоты профиля
резьбы:
=
0,5 – для трапецеидальной резьбы,
=
0,75 – для упорной резьбы,
=
0,54 – для метрической резьбы;
– шаг резьбы.
Число витков гайки:
,
где
– высота гайки:
,
– коэффициент
высоты гайки:
=1,2…2,5.
При выборе
коэффициента высоты гайки
следует помнить: в некоторых механизмах
по условиям работы необходимо обеспечить
жесткую фиксацию винта в гайке, чтобы
считать заделку винта жесткой заделкой
(см. расчет винта на устойчивость). Для
этого коэффициент высоты гайки должен
быть
.
В остальных случаях нужно брать меньшие
значения коэффициента
для более крупных диаметров резьбы.
Таким образом, площадь поверхности витков гайки:
.
Условие износостойкости примет вид:
Экспериментальным
путем установлено, что для сочетания
материалов закаленная сталь – бронза
= 10…15 МПа, для пары незакаленная сталь
– бронза
= 8…10 МПа, для пары незакаленная сталь
– чугун
= 4…6 МПа, для пары сталь – сталь
= 6 МПа. Чем выше антифрикционные свойства
материала гайки, тем выше значение
должно приниматься. Для механизмов
точных перемещений значения
принимают в 2-3 раза меньше, чем для
механизмов общего назначения. При
редкой работе винтового механизма
может быть повышено на 20%.
Таким образом, для подбора резьбы определяется средний диаметр d2:
.
По рассчитанному среднему диаметру, по таблицам справочника подбирают стандартные резьбы. Следует отдавать предпочтение средним значениям шагов.