
- •Биотические:
- •Абиотические:
- •Теория распределения импульсов.
- •Гистамин.
- •Местное
- •Потребность – это основная причина деятельности; специфическая сила, источник и побуждение.
- •Спинальный уровень.
- •2. Стволовой уровень.
- •3. Гипоталамический уровень.
- •4. Кора больших полушарий.
- •Закон силы.
- •2. Зависимость пороговой силы стимула от его длительности.
- •3.Зависимость порога от крутизны нарастания раздражителя (аккомодация).
- •Закон “ все или ничего”.
- •Изменение возбудимости при возбуждении.
- •Лабильность (функциональная подвижность).
- •Полярный закон раздражения (закон Пфлюгера).
- •Закон анатомической и физиологической непрерывности волокна.
- •Закон двустороннего проведения возбуждения
- •3. Закон изолированного проведения возбуждения в нервных стволах.
- •Перепад (градиент) давлений.
- •Гомеометрическая регуляция.
- •Усиленные отведения от конечностей. Регистрируются потенциалы
- •Транспортная.
- •Регуляторная.
- •Защитная.
- •Питание.
- •Транспорт.
- •Белки плазмы как неспецифические переносчики.
- •Буферная функция.
- •Предупреждение кровопотери.
- •Транспортная.
- •Регуляторная.
- •Защитная.
- •Питание.
- •Транспорт.
- •Белки плазмы как неспецифические переносчики.
- •Буферная функция.
- •Предупреждение кровопотери.
- •Транспортная.
- •Регуляторная.
- •Защитная.
- •Различают: -скелетные мышцы
- •Одиночное мышечное сокращение.
- •Различают 3 типа мышечной ткани: -скелетную (мышцы прикрепляются к костям скелета)
- •Быстрые (фазные):
- •Различают 3 типа мышечной ткани: -скелетную (мышцы прикрепляются к костям скелета)
- •Опорная – вместе с сосудами и мозговыми оболочками образуют строму ткани мозга.
- •Афферентные (сенсорные, чувствительные, рецепторные)
- •Холинэргические
- •По модальности адекватных раздражителей (по физической природе раздражителя):
- •2. По отношению к внешней среде
- •3 Стадия – формирование энграммы.
- •Пищеварение – система процессов, связанная с механической и химической переработкой пищи, ее накоплением и лишением видовой специфичности.
- •Протеолитические.
- •Липолитические и амилолитические ферменты.
- •Регулирующие воздействия соответственно фазам желудочной секреции.
- •По локализации рецепторов.
- •По характеру влияния.
- •Условно-рефлекторная компонента.
- •Безусловно-рефлекторная компонента.
- •Продукты переваривания белка, экстракты мяса, овощей.
- •«Энтерогастронная» теория.
- •Современные представления:
- •Протеолитические ферменты:
- •Липолитические ферменты.
- •Гликолитические ферменты.
- •Протеолитические ферменты.
- •Потребность – это основная причина деятельности; специфическая сила, источник и побуждение.
- •Гетерометрический мезанизм.
- •Гомеометрический механизм.
- •1. Влияние центральной нервной системы. Рефлекторная регуляция.
- •Сосудистый компонент.
- •2. Клеточный компонент.
- •3. Плазматическое свертывание.
- •Фибринолиз.
- •Фибриноген.
- •Протромбин.
- •Простагландин е1 .
- •Антитромбин IV (макроглобулин).
- •Фибриноген появляется в плазме на 4-5 месяце внутриутробного развития и достигает нормы взрослого на 2-4 день после рождения. Другие факторы свертывания – аналогичная закономерность.
- •Общая сенсорная физиология
- •Теория информации в сенсорной физиологии
- •И. П. Павлов кроме силы, подвижности и уравновешенности нервных процессов обнаружил у человека и преобладание сигнальной системы.
- •Потенциал действия
- •Нейрогуморальный (центральный) компонент.
- •Базальный (миогенный) компонент.
- •Миогенная теория формирования базального тонуса.
- •Метаболическая теория (Павлов-Анреп, 1912 г.).
- •Концепция миогенного автоматизма.
- •Магистральные отделы мозга.
- •Артерии мягкой мозговой оболочки.
- •Внутримозговые сосуды, артерии.
- •Статические
- •Рефлексы установочные (выпрямительные). Рефлексы положения или позно-тонические
-
Опорная – вместе с сосудами и мозговыми оболочками образуют строму ткани мозга.
-
Трофическая – обеспечивают метаболизм нервных клеток (связь с кровеносными сосудами). В глиоцитах сосредоточен весь гликоген ЦНС.
-
Участие в интегративной деятельности мозга:
-
формирование следов воздействия (память), а значит и условного рефлекса;
-
без глиоцитов (блокада антиглиальным гамма-глобулином) меняется электрическая активность нейронов.
Особенности глиальных клеток.
-
Более чувствительны к ионным изменениям среды
-
Высокая активность калий – натриевой АТФ-азы
-
Высокая проницаемость для ионов калия
-
Мембранный потенциал равен 90 мВ; у нейронов 60 – 80 мВ
-
На раздражение отвечает только медленной деполяризацией не более 10 мВ
-
Потенциал действия в глиальных клетках не генерируется.
НЕЙРОН.
Функциональная классификация.
-
Афферентные (сенсорные, чувствительные, рецепторные)
-
Вставочные (аасоциативные, интернейроны)
-
возбуждающие
-
тормозные
-
Эфферентные (двигательные, моторные).
Афферентные нейроны.
Тело округлой формы находится вне ЦНС, в спинальном ганглии, имеет один отросток, который затем Т-образно делится. Один отросток идет на периферию и образует там чувствительные окончания (рецепторы). Другой отросток идет в ЦНС, где ветвится и формирует синаптические окончания на вставочных или эффекторных клетках.
Генерация потенциала действия в афферентных волокнах отмечается в первом от рецептора перехвате Ранвье.
Тело афферентной клетки в возбуждении участия не принимает. Выполняет трофическую функцию. Терминальная часть афферентного волокна ветвится, обеспечивая передачу возбуждения от одного рецептора к нескольким вставочным нейронам.
Вставочные нейроны.
Составляет 90% всех нейронов. Отростки не покидают пределов ЦНС, но обеспечивают многочисленные связи по горизонтали и вертикали.
Особенность:
Могут генерировать потенциал действия с частотой 1000 в сек.
Причина: короткая фаза следовой гиперполяризации.
Мотонейроны – аксоны выходят за пределы ЦНС и заканчиваются синапсом на эффекторных структурах.
Терминальная часть аксона ветвится, но есть ответвления и вначале аксона – аксонные коллатерали. Место перехода тела мотонейрона в аксон – аксонный холмик – наиболее возбудимый участок. Здесь генерируется ПД, затем распространяется по аксону.
На теле нейрона огромное количество синапсов.
Если синапс образован аксоном возбуждающего интернейрона, то при действии медиатора на постсинаптической мембране возникает ВПСП (возбуждающий постсинаптический потенциал).
Если синапс образован аксоном тормозной клетки, то при действии медиатора на постсинаптической мембране возникает гиперполяризация или ТПСП.
Алгебраическая сумма ВПСП и ТПСП на теле нервной клетке проявляется в возникновении потенциала действия (ПД) в аксонном холмике.
Ритмическая активность мотонейронов в нормальных условиях 10 импульсов в секунду, но может возрастать в несколько раз.
Проведение возбуждения.
ПД распространяется за счет местных токов ионов, возникающих между возбужденным и невозбужденным участками мембраны. Так как ПД генерируется без затрат энергии, то нерв обладает самой низкой утомляемостью.
СИНАПС.
Синапс – специализированная структура, обеспечивающая передачу нервного импульса с аксона на другую клетку.
Различают синапсы:
-
Центральные – в головном и спинном мозге, это межнейронные или нейрональные:
-
аксосоматические
-
аксодендритические
-
аксоаксональные.
-
Периферические:
-
мионейрональные (нервно –мышечные)
-
нейросекреторные
-
синапсы вегетативных ганглиев.
У млекопитающих и человека обычно встречаются химические синапсы. В них при поступлении возбуждения (ПД) к окончанию аксона, в последнем освобождается химическое вещество, которое вызывает возбуждение или торможение на мембране иннервируемой клетки.
В синапсе возбуждение всегда передается от пресинаптического (аксонного) участка к постсинаптической области соседней клетки. Таким образом, синапс работает по принципу клапана или диода.
Пресинаптическое нервное окончание.
Характерно наличие большого количества субмикроскопических структур округлой формы, которые называют синаптическими пузырьками (везикулами), имеются митохондрии.
Синаптическая щель.
-
Ширина 10 – 50 нм (100-500 А). При таких размерах электрическая передача возбуждения практически невозможна из-за значительной потери тока во внеклеточной среде, поэтому химическая передача возбуждения представляет собой необходимый усиливающий механизм.
-
Синаптическая щель – это непосредственное продолжение межклеточного пространства.
Постсинаптическая мембрана.
-
Наличие специфических хеморецепторов
-
Малое количество ионоселективных каналов для ионов натрия, а потому низкая чувствительность к электрическому току.
-
Следовательно, невозможность генерировать ПД
-
Возникает только локальное возбуждение – ВПСП или ТПСП.
-
Имеются ферменты, разрушающие медиатор, который уже прореагировал с рецептором.
В состоянии покоя некоторые везикулы с медиатором подходят к пресинаптической мембране и медиатор попадает в синаптическую щель, диффундирует, вступает во взаимодействие с рецепторами постсинаптической мембраны и обусловливает постсинаптический потенциал.
Механизм секреции медиатора регулируется рядом биологически активных веществ, в том числе самими медиаторами, а также циклическими нуклеотидами и нейропептидами, которые являются в данном случае модулятором синаптической передачи.
Основные этапы синаптической передачи.
-
Приход ПД к пресинаптической мембране, ее деполяризация и генерация на ней потенциала действия.
-
Проникновение внутрь пресинаптической мембраны ионов кальция – для транспорта везикул с медиатором.
-
Взаимодействие везикул с активными участками пресинаптической мембраны.
-
Экзоцитоз и выделение квантов медиатора в синаптическую щель (квант медиатора – это содержимое одной везикулы).
-
Диффузия медиатора к постсинаптической мембране.
-
Взаимодействие медиатора с клеточными рецепторами субсинаптической мембраны.
-
Изменение неспецифической проницаемости для ионов.
-
Образование постсинаптических потенциалов.
-
Возникновение на постсинаптической мембране потенциала действия.
В зависимости от того, какой медиатор синтезируется в нервной клетке, синапсы и рецепторы постсинаптических мембран этих синапсов подразделяются: