
- •Часть 1
- •Тема 1: Принципы построения компьютеров
- •1.1. История развития вычислительной техники
- •1.2 Варианты классификации эвм
- •1.3 Классическая архитектура эвм
- •Выводы по теме
- •Тема 1: Принципы построения компьютеров
- •1.4 Состав компьютера
- •1.5 Биты, байты, слова
- •1.6 Ячейки памяти, порты и регистры
- •Тема 1: Принципы построения компьютеров
- •1.7 История развития пк
- •1.8 Структурная схема
- •1.9 Состав системного блока
- •Контрольные вопросы по теме 1
- •Тема 2: Физические основы представления информации в компьютерах
- •2.1. Информатика, информация, сигналы и их представление
- •1.2 Измерение количества информации
- •1.3 Кодирование символьной информации
- •Тема 2: Физические основы представления информации в компьютерах
- •Контрольные вопросы по теме 2
- •Тема 3: Архитектуры микропроцессоров
- •Тема 3: Архитектуры микропроцессоров
- •Контрольные вопросы
- •Тема 3: Архитектуры микропроцессоров
- •Логические узлы (агрегаты) эвм,
- •Простейшие типы архитектур
- •Контрольные вопросы к теме 3
- •Тема 4: Принцип адресации и структура команд
- •Общие сведения, определения и классификация
- •Логическая организация памяти и методы адресации информации
- •Тема 4: Принцип адресации и структура команд
- •4.3 Командный цикл процессора
- •4.3 Структура команд процессора
- •4.4 Система операций
- •Контрольные вопросы по теме 4
- •Тема 5: Система прерываний и организация ввода/вывода
- •Пространство ввода-вывода
- •Параллельный обмен
- •Последовательный обмен
- •Тема 5: Система прерываний и организация ввода/вывода
- •5.5 Виды прерываний
- •5.6 Обнаружение изменения состояния внешней среды
- •Тема 5: Система прерываний и организация ввода/вывода
- •Распределение системных ресурсов
- •Контрольные вопросы по теме 5
- •Тема 6: Многопроцессорные архитектуры
- •6.1 Представление о вычислительных системах
- •6.2 Основные определения.
- •6.3 Уровни и средства комплексирования.
- •Тема 6: Многопроцессорные архитектуры
- •6.3 Классификация м. Флинном
- •6.4 Другие подходы к классификации вс
- •Тема 6: Многопроцессорные архитектуры
- •6.7 Кластерная архитектура
- •Тема 6: Многопроцессорные архитектуры
- •6.8 Коммуникационные среды
- •6.9 Коммутаторы для многопроцессорных вычислительных систем
- •Контрольные вопросы по теме 6
- •Тема 7: Особенности реализации оперативной памяти в компьютерах типа ibm pc
- •7.1 Виды электронная память
- •7.2 Структура оперативной памяти
- •7.3 Кэширование оперативной памяти
- •Тема 7: Особенности реализации оперативной памяти в компьютерах типа ibm pc
- •Основные характеристики зу
- •Основные принципы работы
- •Тема 7: Особенности реализации оперативной памяти в компьютерах типа ibm pc
- •7.7 Динамическая память
- •7.8 Статическая память
- •Контрольные вопросы к теме 7
1.9 Состав системного блока
Системный блок обычно включает в себя: системную плату, блок питания, накопители на дисках, разъемы для дополнительных устройств; платы расширения с контроллерами — адаптерами внешних устройств.
В зависимости от его конфигурации и размеров корпуса определяются такие характеристики ПК, как возможность дальнейшего расширения, транспортировка, доступ к компонентам и т. д.
Типы корпусов: Slimline, Desktop, Tower (Mini-Tower, Midi-Tower, Super-Big-Tower), File Server (рис. 1.4).
Рисунок
1.4- Типы корпусов ПК
Системная плата (рис. 4.4) является основой системного блока, который обеспечивает внутренние связи, взаимодействует через прерывания с внешними устройствами и содержит компоненты, определяющие архитектуру ПК. Системные платы с различными микропроцессорами отличаются друг от друга по типам применяемых элементов и модулей памяти, возможностям конфигурирования и т. д. Набор микросхем на системной плате, обеспечивающий работу ЦП по обмену данными с периферийными устройствами, называют Chipset.
Разъемы
задней панели 1,2
–
разъемы PS/2 (мышь и клавиатура)
3,4 – разъемы USB
5 – принтер (LPT1
6-9 – штырьковые (D9) разъемы
последовательных портов
8 – игровой порт
9, 10, 11- разъемы звуковой платы (микрофон, линейный вход, линейный выход)
Рисунок 1.5-Системная плата АТХ и её основные разъемы
Чипсет
Chipset, или «PCIset» — совокупность микросхем, размещенных на системной плате, которые организуют потоки команд и данных в ПЭВМ.
Сюда входят: основная память, вторичная кэш-память и устройства, связанные с шинами ISA и PCI.
Кроме того, чипсет контролирует потоки данных НЖМД и других устройств, соединенных с каналом IDE. Иногда в состав чипсета включают и сам микропроцессор.
Чипсеты производят различные фирмы — SIS, VIA, OPTI и Intel
Рассмотрим технические данные чипсет Intel Р35 (рис. 1.6).
Технология -45 нм
Частота 533 МГц, скорость передачи данных по каналу PCI Е 2.0 до 1000 Мб/с
В качестве северного моста применяется м/сх P35 GMСH, которая связана с южным мостом ICH9 по интерфейсу DMI, обеспечивающем скорость обмена данными до 2 Гб/с.
Для связи DDR2 имеется 2 канала по 6,4 Гбит/с.
Таблица 1.2- Сравнительные характеристики для iP35 |
|
Частота FSB |
800/1066/1333 МГц |
Поддержка 45-нм процессоров |
+ |
Конфигурация памяти |
2 канала по 2 слота DDR2 667/800 DDR3 800/1067 8 Гб макс. |
Дискретный графический интерфейс |
PCI Express xl 6 |
Порты PCI Express |
6 PCI Express xl |
Шина между мостами |
2 Гб/сек |
USB |
2.0, 12 портов |
Каналы SATA |
6 шт, 3 Гб/с максимум |
Каналы РАТА |
- |
RAID |
- (для ICH9R: 0, +1,0+1, 5) |
Звук |
HD Audio |
Lan |
Гигабитный адаптер |
Дополнительные интегральные микросхемы
К системной шине и к МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные интегральные микросхемы, расширяющие и улучшающие функциональные возможности микропроцессора:
-
математический сопроцессор;
-
контроллер прямого доступа к памяти;
-
сопроцессор ввода-вывода;
-
контроллер прерываний и т. д.
Математический сопроцессор широко используется для ускоренного выполнения операций над двоичными числами с фиксированной и плавающей запятой, над двоично-кодированными десятичными числами, для вычисления некоторых трансцендентных, в том числе тригонометрических функций. Математический сопроцессор имеет свою систему команд и работает параллельно (совме-щенно во времени) с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз.
Контроллер прямого доступа к памяти (DMA — Direct Memory Access) обеспечивает обмен данными между внешними устройствами и оперативной памятью без участия микропроцессора, что существенно повышает эффективное быстродействие ПК. Иными словами, режим DMA позволяет освободить процессор от рутинной пересылки данных между внешними устройствами и ОП, отдав эту работу контроллеру DMA; процессор в это время может обрабатывать другие данные или другую задачу в многозадачной системе.
Сопроцессор ввода-вывода за счет параллельной работы с МП существенно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (дисплея, принтера, НЖМД, НГМД и т. д.); освобождает МП от обработки процедур ввода-вывода, в том числе реализует и режим прямого доступа к памяти.
Контроллер прерываний обслуживает процедуры прерывания. Прерывание — временная приостановка выполнения одной программы с целью оперативного выполнения другой, в данный момент более важной (приоритетной) программы. Контроллер принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в МП. Микропроцессор, получив этот сигнал, приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешнее устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым. Прерывания возникают при работе компьютера постоянно, достаточно сказать, что все процедуры ввода-вывода информации выполняются по прерываниям. Например, в компьютерах IBM PC прерывания от таймера возникают и обслуживаются контроллером прерываний 18 раз в секунду (длятся эти прерывания тысячные доли секунды и поэтому пользователь их не замечает).
Основная память
Основная память (ОП) предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств:
• оперативное запоминающее устройство (ОЗУ, RAM — Random Access Memory) предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Большинство современных компьютеров комплектуются модулями типа DIMM (Dual-In-line Memory Module — модуль памяти с двухрядным расположением микросхем).
В компьютерных системах на самых современных процессорах используются высокоскоростные модули Rambus DRAM (RIMM) и DDR2 DRAM.
Рисунок 1.7- Модули памяти RIMM и DIMM
• постоянное запоминающее устройство (ПЗУ, ROM — Read Only Memory) предназначено для хранения неизменяемой (постоянной) программной и справочной информации; позволяет оперативно только считывать информацию, хранящуюся в нем (изменить информацию в ПЗУ нельзя);
Специальная память
К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.
Постоянная память (ПЗУ, англ. ROM, Read Only Memory — память только для чтения) — энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом «зашивается» в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.
Перепрограммируемая постоянная память (Flash Memory) — энергонезависимая память, допускающая многократную перезапись своего содержимого.
Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.
Важнейшая микросхема постоянной или Flash-памяти — модуль BIOS. Роль BIOS двоякая: с одной стороны, это неотъемлемый элемент аппаратуры, а с другой стороны — важный модуль любой операционной системы.
BIOS (Basic Input/Output System — базовая система ввода-вывода) — совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.
Разновидность постоянного ЗУ — CMOS RAM (рис. 4.9).
CMOS RAM — это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы
.
Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS (англ. Set-up — устанавливать, читается «сетап»).
Для хранения графической информации используется видеопамять.
Видеопамять (VRAM) — разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам — процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.