Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ефимов_Опт Материаловед_version 2010.doc
Скачиваний:
164
Добавлен:
21.11.2018
Размер:
3.27 Mб
Скачать

1. Основные понятия физики оптических явлений в твердых телах

1.1. Общие соотношения

На макроскопическом уровне поведение материала под воздействием электрического поля световой волны определенной частоты описывается в линейном приближении с помощью уравнений Максвелла (см., например, [2]). Уравне́ния Ма́ксвелла (1864 г.) - основные уравнения классической электродинамики, описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами. В данном пособии они подробно не рассматриваются. Чтобы дать общее представление об уравнениях Максвелла, ниже приводится их вид в системе единиц CGSE:

Здесь:

  • ρ — плотность электрического заряда (в единицах СИ — Кл/м³);

  • j — плотность электрического тока (в единицах СИ — А/м²);

  • λ — удельная проводимость или, что то же, электропроводность (в единицах СИ — м/Ом);

  • E — напряжённость электрического поля (в единицах СИ — В/м);

  • H — напряжённость магнитного поля (в единицах СИ — А/м);

  • D — электрическая индукция (в единицах СИ — Кл/м²);

  • B — магнитная индукция (в единицах СИ — Тл = Вб/м²= кг·с-2·А-1);

  • rot — дифференциальный оператор ротора;

  • div — дифференциальный оператор дивергенции.

Магнитная и электрическая постоянные вакуума обозначаются через ε0 и μ0. Поэтому для вакуума электрическая и магнитная индукция может быть записана (без учета очень малых квантовых эффектов) в виде

Уравнения Максвелла для вакуума без электрических зарядов и токов имеют вид:

Эта система дифференциальных уравнений имеет простое решение — гармоническая, плоская волна. Векторы электрического и магнитного полей перпендикулярны направлению распространения волны и друг другу, и находятся в фазе. Волна распространяется со скоростью

,

где c - скорость света в вакууме. Общепринятые значения скорости света, электрической и магнитной постоянных в системе СИ приведены в таблице.

Символ

Имя

Численное значение

Единицы измерения в системе СИ

Тип размерности

Постоянная скорости света

2.99792458×108

м/с

LT−1

Электрическая постоянная

8.854×1012

Ф / м

L−3M−1T4I2

Магнитная постоянная

1.2×10−6

Гн / м

LMT−2I−2

Для понимания дальнейшего изложения данной дисциплины достаточно знать, что, согласно решениям уравнений Максвелла,

а) отклик материала на воздействие электрического поля световой волны полностью определяется его диэлектрической проницаемостью при этой частоте;

б) диэлектрическая проницаемость материала с любой конечной (не равной нулю) электрической проводимостью (то есть любого материала, кроме вакуума) является комплексной величиной.

Таким образом, используя широко распространенное в математике обозначение комплексной величины с помощью значка ˆ над ее символом, можно написать: .

Поскольку диэлектрическая проницаемость – это всегда квадрат показателя преломления, то показатель преломления также оказывается комплексной величиной , в которой действительная часть n – это знакомый всем из школьного курса физики показатель

преломления, определяемый законом Снеллиуса,1 а мнимая часть (здесь греческая буква «каппа»; не путать с латинской k!) - это безразмерный показатель поглощения, связанный с измеряемыми в эксперименте характеристиками поглощения (см. ниже параграф 2.3) через скорость света. Таким образом, взаимосвязь между показателем преломления и диэлектрической проницаемостью материала с конечной проводимостью согласно решениям уравнений Максвелла имеет вид:

. (1.1.1)

Соответственно

= n 2 - 2 (1.1.2а)

и

= 2n. (1.1.2б)

Рассмотрим теперь в общих чертах, что происходит в материале на микроуровне при воздействии на него электрической составляющей электромагнитного поля световой волны.

Под воздействием приложенного электрического поля световой волны имеющиеся в нем электрические заряды (электроны, ионы и атомы, несущие какие-либо эффективные заряды) смещаются в направлении соответствующих полюсов. Это явление называется поляризацией материала. В результате в нем возникают наведенные диполи (которые добавляются к постоянным диполям, если таковые имелись в материале). Количественной мерой поляризации материала служит вектор поляризации (или, кратко, просто поляризация) - суммарный наведенный дипольный момент2 единицы объема. Наличие не равного нулю поглощения энергии световой волны в материале вызывает отставание вектора поляризации по фазе от внешнего электрического поля этой волны Е, что и приводит к необходимости описания вектора поляризации и диэлектрической проницаемости (а, следовательно, и показателя преломления) как комплексных величин.

Таким образом, действительная и мнимая части комплексной диэлектрической проницаемости (равно как и показателя преломления), которые определяют преломляющие и абсорбционные свойства материала соответственно, не являются независимыми: существует глубокая внутренняя взаимосвязь этих на первый взгляд различных свойств. Эта взаимосвязь подробно рассматривается ниже в подразделах 3-5.

Во всех дисциплинах, относящихся к области физики оптических явлений, принято обозначать взаимосвязанные пары величин  и  и/или n и собирательным термином «оптические постоянные». Именно такой смысл термина «оптические постоянные» и используется в данном учебно-методическом пособии.3

В простейшем случае равенства внешнего (приложенного) электрического поля E и внутреннего электрического поля в материале Eint4 значение вектора поляризации определяется соотношением

, (1.1.3)

где N - число заряженных частиц (электронов, атомов или ионов) в единице объема вещества. Комплексный коэффициент пропорциональности между приложенным полем и вкладом в значение вектора поляризации называется поляризуемостью соответствующей частицы вещества. Таким образом, поляризуемость служит микроскопической характеристикой поляризации.

Как же связать эту микроскопическую характеристику с вышеописанными характеристиками макромира?

Из электростатики известно, что

. (1.1.4)

Приравнивая это выражение и вышеприведенное выражение (3) для P, получаем, что в приближении равенства внешнего и внутреннего электрического поля комплексная диэлектрическая проницаемость выражается через поляризуемость соотношением

. (1.1.5)

До сих пор рассмотрение ограничивалось случаем постоянной частоты световой волны (т. е. случаем монохроматического излучения). Однако оптические постоянные всегда являются, как известно, функциями частоты, что не рассматривается в рамках решений уравнений Максвелла (они являются слишком общими для такого рассмотрения). Поэтому, строго говоря, вышеприведенные выражения для и следует переписать в виде

(1.1.6)

и

. (1.1.7)

Здесь - текущая круговая частота, являющаяся аргументом соответствующих функций. Она связана с длиной волны соотношением

2c/,

где c - скорость света. Наряду с круговой частотой используются и другие характеристики частоты:

  • линейная частота  (здесь  греческая буква «ню»; не путать с латинской v!), характеризующая число периодов волны в секунду (размерность – Гц),

  • c/ = /2;

  • волновое число (его размерность – см-1):

.

Линейная частота используется, как правило, для волн радиодиапазона, а волновое число – для волн инфракрасного (ИК) диапазона.

Для областей очень высоких частот излучение принято характеризовать также энергией кванта E (в эВ):

,

где h – постоянная Планка, или, при выражении длины волны в мкм,

.

Прежде чем переходить к анализу частотной зависимости оптических постоянных, необходимо напомнить вкратце физическую природу поглощения оптического излучения в различных спектральных диапазонах, а также количественные соотношения, описывающие изменения характеристик светового потока при прохождении через слой оптического материала.