Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
25 Система Galileo.doc
Скачиваний:
8
Добавлен:
20.11.2018
Размер:
136.7 Кб
Скачать

Возможности системы Galileo для аварийно-спасательных служб (sar)

Сигналы бедствия службы спасения SAR (от вызовов излучающих сигнальных маяков до операторов службы SAR) будут обнаружены спутниками Galileo в диапазоне частот 406.0 - 406.1 МГц и затем пересланы на специализированные наземные станции на частотах диапазона 1544 – 1545 МГц, обозначенного как L6 (ниже навигационного диапазона E2 зарезервированного за аварийными службами). Обратный сигнал с данными SAR (от SAR операторов до маяка, излучающего сигнал бедствия), который необходим для подтверждения получения сигнала тревоги и координации спасательных команд будет добавлен в данные сервиса открытого доступа OS и передан с несущей частотой в диапазоне частот E2-L1-E1.

Параметры быстродействия

Рис. 2. Погрешности от переотраженных сигналов: зеленый - BOC(15,10), черный - BOC(10,5), голубой - BPSK(10), красный - BPSK(5).

Комплексная оценка быстродействия и эксплуатационных характеристик сигнала в системе Galileo в настоящее время еще проводится. Главное отличие сигнала системы Galileo от излучаемого сигнала системы NAVSTAR заключено в использовании схемы модуляции BOC (в перспективе Alt BOC) и, как следствие, более широкой полосы занимаемых частот для большинства сигналов.

В этом контексте влияние ошибок обработки кодов псевдодальностей на важнейшие параметры приборов всегда связывают с влиянием температурных шумов. В таблице 4 показан нижний предел “Cramer-Rao” этих значений для всех сигналов системы Galileo и сигналов C/A системы NAVSTAR, а также всех сигналов NAVSTAR в диапазоне L5. Полагая цикл задержка-захват приемника имеющим полосу пропускания в 1 Гц, мы используем значение 205 dbW для преобразования минимальной принимаемой энергии в широко распространенное отношение сигнал-шум. Мощности преобразованных одночастотного и сервисного (т.е. с каналами данных и “пилот” сигнала) взаимосвязаны.

Табл. 4 показывает, что сигнал BOC демонстрирует низкий уровень ошибок обработки кодов псевдодальности, т.к. большая спектральная плотность мощности размещена на нижней и верхней границах частотного спектра, а не в центре, что характерно для BPSK и QPSK сигналов. В результате, предполагается, что функция автокорреляции сигнала BOC имеет множественные пики, что в свою очередь, приводит к необходимости изменения рабочего алгоритма приемника для корректировки центральных пиков.

Таблица 4. Погрешность кодовой последовательности, обусловленная температурным шумом.

Обрабатываемые сигналы

Модуляция

Мощность (dbW)

Ширина полосы частот сигнала (MHz)

Шумы кодирования (см)

E5a и E5b

BPSK (10)

-155

24

4.6

E5a + E5b не связанные

BPSK (10)

-152

24

3.2

E5a + E5b связанные

BOC (15.10)

-152

51

0.8

E6A

BOC (10.5)

-155

40

1.7

E6B + E6C

BPSK (5)

-155

24

6.2

L1A

BOC (14.2)

-155

32

1.2

L1B + L1C

BOC (2.2)

-155

24

5.5

NAVSTAR C/A

BPSK (1)

-160

24

23.9

NAVSTAR L5

BPSK (10)

-154

24

4.1

Рис. 3. Погрешности от переотражений: черный - BOC(2,2), красный - BOC(14,2), голубой - BPSK(1).

Большая ширина полосы частот сигнала позволяет использовать весьма ограниченную область корреляции. Малый температурный шум и низкий уровень кодовых наложений в результате дают определенный выигрыш. Погрешность от кодовых наложений значительно отличается для BOC и BPSK сигналов, как показано на рисунках 2 и 3, соответственно. Эти два рисунка основаны на данных кодового дискриминатора с общей областью дискриминации d 5 1/14, что наглядно позволяет сравнивать все сигналы и визуально корректировать центральные пики сигнала BOC(14,2). Любой переотраженный сигнал слабее на 23 dB прямого сигнала. (Следует отметить, что обычно диапазон амплитуд переотраженных сигналов лежит в пределах от 27 dB до 210 dB).

Рисунки 2 и 3 показывают, что характеристики переотражений для сигналов BOC, как правило, лучше, чем для сигналов BPSK.

Совместная корректировка в диапазонах E5a и E5b имеет экстремально низкие погрешности корректировки кодов от влияния температурного шума (смотри линию 3 в табл. 4) и хорошие характеристики уменьшения влияния переотражений. Если корректировку в диапазонах E5a и E5b проводить раздельно (т.е. несвязанно), как для сигнала QPSK(10) и совмещать после раздельной корректировки (т.е. усреднить полученную в диапазонах E5a и E5b псевдодальность), характеристики выигрыша получаются значительно скромнее (смотри линию 2 в табл. 4).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]