
- •Информация о курсе
- •5. Тупики
- •6. Организация памяти компьютера. Схемы управления памятью.
- •7. Аппаратно-независимый уровень управления виртуальной памятью
- •1. Лекция: Введение
- •Что такое операционная система Структура вычислительной системы
- •Что такое ос
- •Операционная система как виртуальная машина
- •Операционная система как менеджер ресурсов
- •Операционная система как защитник пользователей и программ
- •Операционная система как постоянно функционирующее ядро
- •Краткая история эволюции вычислительных систем
- •Первый период (1945–1955 гг.). Ламповые машины. Операционных систем нет
- •Второй период (1955 г.–начало 60-х). Компьютеры на основе транзисторов. Пакетные операционные системы
- •Третий период (начало 60-х – 1980 г.). Компьютеры на основе интегральных микросхем. Первые многозадачные ос
- •Четвертый период (с 1980 г. По настоящее время). Персональные компьютеры. Классические, сетевые и распределенные системы
- •Основные понятия, концепции ос
- •Системные вызовы
- •Прерывания
- •Исключительные ситуации
- •Архитектурные особенности ос
- •Монолитное ядро
- •Многоуровневые системы (Layered systems)
- •Виртуальные машины
- •Микроядерная архитектура
- •Смешанные системы
- •Классификация ос
- •Реализация многозадачности
- •Поддержка многопользовательского режима
- •Многопроцессорная обработка
- •Системы реального времени
- •Заключение
- •Приложение 1. Некоторые сведения об архитектуре компьютера
- •Взаимодействие с периферийными устройствами
- •2. Лекция: Процессы
- •Понятие процесса
- •Состояния процесса
- •Операции над процессами и связанные с ними понятия Набор операций
- •Process Control Block и контекст процесса
- •Одноразовые операции
- •Многоразовые операции
- •Переключение контекста
- •Заключение
- •3. Лекция: Планирование процессов
- •Уровни планирования
- •Критерии планирования и требования к алгоритмам
- •Параметры планирования
- •Вытесняющее и невытесняющее планирование
- •Алгоритмы планирования
- •Гарантированное планирование
- •Приоритетное планирование
- •Многоуровневые очереди (Multilevel Queue)
- •Многоуровневые очереди с обратной связью (Multilevel Feedback Queue)
- •Заключение
- •4. Лекция: Кооперация процессов. Алгоритмы синхронизации
- •Взаимодействующие процессы
- •Категории средств обмена информацией
- •Сигнальные
- •Канальные
- •Разделяемая память
- •Логическая организация механизма передачи информации
- •Как устанавливается связь?
- •Информационная валентность процессов и средств связи
- •Особенности передачи информации с помощью линий связи
- •Буферизация
- •Поток ввода/вывода и сообщения
- •Надежность средств связи
- •Как завершается связь?
- •Алгоритмы синхронизации
- •Interleaving, race condition и взаимоисключения
- •Достаточные условия Бернстайна
- •Механизмы синхронизации
- •Критическая секция
- •Алгоритмы организации взаимодействия процессов Требования, предъявляемые к алгоритмам
- •Запрет прерываний
- •Переменная-замок
- •Аппаратная поддержка взаимоисключений
- •Команда Test-and-Set (проверить и присвоить 1)
- •Команда Swap (обменять значения)
- •Заключение
- •5. Лекция: Тупики Введение
- •Условия возникновения тупиков
- •Основные направления борьбы с тупиками
- •Игнорирование проблемы тупиков
- •Способы предотвращения тупиков
- •Способы предотвращения тупиков путем тщательного распределения ресурсов. Алгоритм банкира
- •Предотвращение тупиков за счет нарушения условий возникновения тупиков
- •Нарушение условия взаимоисключения
- •Нарушение условия ожидания дополнительных ресурсов
- •Нарушение принципа отсутствия перераспределения
- •Hарушение условия кругового ожидания
- •Обнаружение тупиков
- •Восстановление после тупиков
- •Заключение
- •6. Лекция: Организация памяти компьютера. Простейшие схемы управления памятью Введение
- •Физическая организация памяти компьютера
- •Локальность
- •Логическая память
- •Связывание адресов
- •Функции системы управления памятью
- •Простейшие схемы управления памятью
- •Один процесс в памяти
- •Оверлейная структура
- •Динамическое распределение. Свопинг
- •Страничная память
- •Сегментная и сегментно-страничная организация памяти
- •Понятие виртуальной памяти
- •Архитектурные средства поддержки виртуальной памяти
- •Страничная виртуальная память
- •Сегментно-страничная организации виртуальной памяти
- •Структура таблицы страниц
- •Ассоциативная память
- •Инвертированная таблица страниц
- •Размер страницы
- •Заключение
- •7. Лекция: Аппаратно-независимый уровень управления виртуальной памятью
- •Исключительные ситуации при работе с памятью
- •Стратегии управления страничной памятью
- •Алгоритмы замещения страниц
- •Алгоритм fifo. Выталкивание первой пришедшей страницы
- •Аномалия Билэди (Belady)
- •Оптимальный алгоритм (opt)
- •Выталкивание дольше всего не использовавшейся страницы. Алгоритм lru
- •Выталкивание редко используемой страницы. Алгоритм nfu
- •Другие алгоритмы
- •Управление количеством страниц, выделенным процессу. Модель рабочего множества
- •Трешинг (Thrashing)
- •Модель рабочего множества
- •Страничные демоны
- •Заключение
Восстановление после тупиков
Обнаружив тупик, можно вывести из него систему, нарушив одно из условий существования тупика. При этом, возможно, несколько процессов частично или полностью потеряют результаты проделанной работы.
Сложность восстановления обусловлена рядом факторов.
-
В большинстве систем нет достаточно эффективных средств, чтобы приостановить процесс, вывести его из системы и возобновить впоследствии с того места, где он был остановлен.
-
Если даже такие средства есть, то их использование требует затрат и внимания оператора.
-
Восстановление после тупика может потребовать значительных усилий.
Самый простой и наиболее распространенный способ устранить тупик – завершить выполнение одного или более процессов, чтобы впоследствии использовать его ресурсы. Тогда в случае удачи остальные процессы смогут выполняться. Если это не помогает, можно ликвидировать еще несколько процессов. После каждой ликвидации должен запускаться алгоритм обнаружения тупика.
По возможности лучше ликвидировать тот процесс, который может быть без ущерба возвращен к началу (такие процессы называются идемпотентными). Примером такого процесса может служить компиляция. С другой стороны, процесс, который изменяет содержимое базы данных, не всегда может быть корректно запущен повторно.
В некоторых случаях можно временно забрать ресурс у текущего владельца и передать его другому процессу. Возможность забрать ресурс у процесса, дать его другому процессу и затем без ущерба вернуть назад сильно зависит от природы ресурса. Подобное восстановление часто затруднительно, если не невозможно.
В ряде систем реализованы средства отката и перезапуска или рестарта с контрольной точки (сохранение состояния системы в какой-то момент времени). Если проектировщики системы знают, что тупик вероятен, они могут периодически организовывать для процессов контрольные точки. Иногда это приходится делать разработчикам прикладных программ.
Когда тупик обнаружен, видно, какие ресурсы вовлечены в цикл кругового ожидания. Чтобы осуществить восстановление, процесс, который владеет таким ресурсом, должен быть отброшен к моменту времени, предшествующему его запросу на этот ресурс.
Заключение
Возникновение тупиков является потенциальной проблемой любой операционной системы. Они возникают, когда имеется группа процессов, каждый из которых пытается получить исключительный доступ к некоторым ресурсам и претендует на ресурсы, принадлежащие другому процессу. В итоге все они оказываются в состоянии бесконечного ожидания.
С тупиками можно бороться, можно их обнаруживать, избегать и восстанавливать систему после тупиков. Однако цена подобных действий высока и соответствующие усилия должны предприниматься только в системах, где игнорирование тупиковых ситуаций приводит к катастрофическим последствиям.
6. Лекция: Организация памяти компьютера. Простейшие схемы управления памятью Введение
Главная задача компьютерной системы – выполнять программы. Программы вместе с данными, к которым они имеют доступ, в процессе выполнения должны (по крайней мере частично) находиться в оперативной памяти. Операционной системе приходится решать задачу распределения памяти между пользовательскими процессами и компонентами ОС. Эта деятельность называется управлением памятью. Таким образом, память (storage, memory) является важнейшим ресурсом, требующим тщательного управления. В недавнем прошлом память была самым дорогим ресурсом.
Часть ОС, которая отвечает за управление памятью, называется менеджером памяти.