
- •Варфоломеева а.С., Кургузов н.Н., Кургузова л.И., Леньков ю.А., Никитин к.И.
- •Учебное пособие. Омск: Изд-во ОмГту, 2007. 197 с.
- •Содержание
- •Введение
- •1 Нагревание проводников и электрических аппаратов
- •1.1 Допустимые максимальные температуры электрических аппаратов и проводников в нормальном режиме и при коротком замыкании
- •1.1.1Общие сведения
- •1.1.2 Изолированные проводники электрического тока в нормальном режиме
- •1.1.3 Неизолированные токоведущие части аппаратов в нормальном режиме
- •1.1.4 Изолированные и неизолированные токоведущие части аппаратов при коротких замыканиях
- •1.1.5 Нетоковедущие части аппаратов
- •1.2 Нагрев проводников и аппаратов
- •1.2.1 Общие сведения
- •1.2.2 Активные потери энергии в проводниках и электрических аппаратах
- •1.2.2.1 Потери в токоведущих частях
- •1.2.2.2 Потери в нетоковедущих ферромагнитных деталях аппаратов
- •1.2.2.3 Потери в диэлектриках
- •1.3 Способы передачи тепла внутри нагретых тел и с их поверхности
- •1.4 Установившийся режим нагрева проводников и аппаратов
- •1.4.1 Общие сведения
- •1.4.2 Тепловой расчёт неизолированных проводников в установившемся режиме
- •1.4.3 Тепловой расчёт изолированных проводников и кабелей
- •1.4.4 Нагревание аппаратов в установившимся режиме
- •1.4.5 Выбор проводников и аппаратов по условиям продолжительного режима
- •1.5 Нагрев проводников и аппаратов в переходных режимах
- •1.6 Примеры теплового расчета
- •Задание №1
- •2 Термическая и электродинамическая стойкость электрических проводников и аппаратов
- •2.1 Нагрев проводников и аппаратов при коротком замыкании
- •2.2 Термическая стойкость проводников и аппаратов
- •2.2.1 Термическая стойкость неизолированных проводников
- •2.2.2 Термическая стойкость кабелей
- •2.2.3 Термическая стойкость электрических аппаратов
- •2.3 Определение импульса квадратичного тока короткого замыкания
- •2.4 Электродинамические усилия в электрических проводниках и аппаратах
- •2.4.1 Общие сведения
- •2.4.2 Методы расчёта электродинамических усилий
- •2.4.3 Усилия между параллельными проводниками
- •2.4.4 Усилия и моменты, действующие на взаимно перпендикулярные проводники
- •2.5 Электродинамические силы в трёхфазной шинной линии при различных видах короткого замыкания
- •2.5.1 Общие сведения
- •2.5.2 Электродинамические силы в трёхфазной шинной линии при трёхфазном коротком замыкании
- •2.5.3 Электродинамические силы в трёхфазной шинной линии при двухфазном коротком замыкании
- •2.6 Электродинамическая стойкость проводников и электрических аппаратов
- •2.6.1 Электродинамическая стойкость проводников
- •2.6.2 Электродинамическая стойкость аппаратов
- •2.7 Примеры расчета термической и электродинамической стойкости проводников и аппаратов
- •Задание №2
- •3 Электрические контакты
- •3.1 Назначения и требования к электрическим контактам
- •3.2 Сопротивление электрического контакта
- •3.3 Нагрев контактных соединений
- •3.3.1 Нагрев контактных соединений при номинальном токе
- •3.3.2 Нагрев контактных соединений при токах короткого замыкания
- •3.4 Конструкция контактных соединений и контактов
- •3.5 Пример расчета нагрева контактных соединений
- •Задание №3.
- •4 Отключение цепей постоянного и переменного тока
- •4.1 Общие сведения
- •4.2 Электрическая дуга
- •4.3 Возбуждение атома.
- •4.4 Ионизация
- •4.4.1 Термоэлектронная эмиссия.
- •4.4.2 Автоэлектронная (электростатическая) эмиссия.
- •4.4.3 Ионизация столкновением
- •4.5 Ударная ионизация
- •4.6 Термическая диссоциация и ионизация.
- •4.7 Деионизация дугового промежутка осуществляется путем рекомбинации и диффузии.
- •4.7.1 Рекомбинация (воссоединение)
- •4.8 Диффузия
- •4.9. Подвижностью ионов (электронов)
- •4.10 Радиационный захват электрона
- •4.11 Классификация дуг
- •4.11.1 Область катодного падения напряжения
- •4.11.2 Область анодного падения напряжения.
- •4.11.3 Ствол дуги
- •4.11.4 Турбулентная конвекция.
- •4.11.5 Баланс энергии в стволе дуги.
- •4.12 Потоки плазмы в дуге
- •4.13 Воздействие внешнего магнитного поля
- •4.14 Дуга постоянного тока и ее характеристики
- •4.15 0Тключение электрических цепей постоянного тока
- •4.15.1 Условия стабильного горения и гашения дуги
- •4.15.2 Открытый разрыв
- •4.15.3 Дугогасительные устройства с узкой щелью
- •4.15.4 Дугогасительные решетки
- •4.15.5 Гашение дуги под воздействием магнитного поля
- •4.16 Электрическая дуга переменного тока и ее характеристики
- •4.17 Отключение электрических цепей переменного тока
- •4.17.1 Отключение активной цепи переменного тока
- •4.17.2.Отключение индуктивной цепи переменного тока
- •4.18 Гашение электрической дуги в выключателях переменного тока
- •4.18.1 Гашение электрической дуги в потоке сжатого воздуха
- •4.18.2 Гашение электрической дуги в элегазе
- •4.18.3 Гашение электрической дуги в трансформаторном масле
- •4.18.4 Гашение электрической дуги в вакууме
- •4.18.5 Гашение электрической дуги с помощью электромагнитного поля
- •4.19 Примеры расчета отключения цепей постоянного и переменного тока
- •Задание №4
- •5 Восстанавливающееся напряжение на контактах выключателя
- •5.1 Параметры восстанавливающегося напряжения
- •5.2 Расчет параметров восстанавливающегося напряжения в однофазной системе
- •5.3 Расчет параметров восстанавливающегося напряжения в трехфазных эффективно-заземленных сетях
- •5.4 Вторая стадия переходного процесса
- •5.5 Номинальные характеристики пвн
- •5.6 Пример расчета параметров пвн на полюсах выключателя
- •6 Электромагниты
- •6.1Электромагниты постоянного тока
- •6.2 Поляризованные электромагниты и постоянные магниты
- •6.3 Электромагниты переменного тока
- •6.4 Примеры расчета электромагнитов
- •1‑Основание; 2‑сердечник; 3‑полюсный наконечник; 4‑якорь
- •Задание №5
- •1 ‑ Якорь; 2 ‑ фланец верхний; 3 ‑ корпус; 4 ‑ фланец нижний; 5 ‑ стоп; 6 ‑ латунная втулка
- •1 ‑ Фланец верхний; 2 ‑ якорь; 3 ‑ стоп; 4 ‑ корпус; 5 ‑ фланец нижний
- •1 ‑ Фланец верхний; 2 ‑ якорь; 3 ‑ стоп; 4 ‑ корпус; 5 ‑ фланец нижний
- •1 ‑ Основание; 2 ‑ сердечник; 3 ‑ полюсный наконечник; 4 ‑ якорь
- •1 ‑ Якорь; 2 ‑ основание; 3 ‑ сердечник; 4 – катушка
- •1 ‑ Якорь; 2 ‑ верхняя плита; 3 ‑ нижняя плита; 4 – полюс.
- •Литература
- •Приложение
2.2.2 Термическая стойкость кабелей
Температура нагрева
кабеля при КЗ рассчитывается по выражению
(2.3) с учетом замены удельной теплоемкости
материала проводника
на эффективную теплоемкость жил кабеля
с учетом пропитывающей массы
по выражению [5]:
(2.6)
где
– удельная теплоемкость металла жилы,
Вт·с/м3·°С;
- удельная теплоемкость пропитывающей
массы, Вт·с/м3·°С;
– коэффициент заполнения сечения
жилы кабеля.
Для кабелей
напряжением 6-35 кВ выше указанные
параметры равны: коэффициент заполнения
q = 0,84;
удельная теплоемкость;
удельная теплоемкость алюминия
;
удельная теплоемкость меди
.
Таким образом,
эффективная теплоемкость алюминиевых
жил кабеля
,
а медных
.
В практических
расчетах при проектировании максимальный
импульс квадратичного тока
для заданного сечения кабеля или
минимальное сечение кабеля
,
отвечающее требованию термической
стойкости при заданном импульсе
квадратичного тока, определяются по
выражениям (2.4) и (2.5).
Значения параметра С для кабелей приведены в [4] и таблице 2.4.
2.2.3 Термическая стойкость электрических аппаратов
Аппарат, рассчитанный
на пропускание номинального тока в
длительном режиме, должен быть проверен
на термическую стойкость при КЗ.
Термическую стойкость электрических
аппаратов заводы-изготовители
характеризуют номинальным током
термической стойкости
и номинальным временем его прохождения
.
Аппарат должен
выдержать ток
.
в течение времени
.(около
1-4 с.); при этом температура частей
аппарата не должна превышать допустимые
значения, установленные для аппаратов
при КЗ, таблица 2.1.
Для проверки
электрических аппаратов на термическую
устойчивость и отключающую способность,
необходимо знать расчетное время
протекания тока КЗ, т.е. время через
которое происходит отключение тока КЗ.
Согласно [4, 5] время отключения тока КЗ
для проверки проводников и электрических
аппаратов на термическую стойкость
складывается из времени действия
основной релейной защиты рассматриваемой
цепи
и полного времени отключения выключателя
:
.
(2.7)
Электрические аппараты и токопроводы, применяемые в цепях генераторов мощностью 63 МВт и более, а также в цепях блоков генератор-трансформатор такой же мощности, должны проверяться по термической устойчивости, исходя из времени протекания тока КЗ четыре секунды [5].
Таблица 2.4
Значения
параметра
для кабелей
Характеристика кабелей |
Значение
|
Кабели до 10 кВ: с медными жилами с алюминиевыми жилами |
140 90 |
Кабели 20 – 30 кВ: с медными жилами с алюминиевыми жилами |
105 70 |
Кабели и изолированные провода с резиновой или поливинилхлоридной изоляцией: с медными жилами с алюминиевыми жилами |
120 75 |
Кабели и изолированные провода с полиэтиленовой изоляцией: с медными жилами с алюминиевыми жилами |
103 65 |
При проверке
электрических аппаратов на отключающую
способность в качестве расчетного
времени протекания тока КЗ
следует принимать сумму минимального
времени действия релейной защиты
данного присоединения и собственного
времени отключения выключателя
,
т.е.
[4].
Термическая устойчивость (стойкость) электрических аппаратов и токоведущих частей проверяется по тепловому импульсу тока КЗ.
Электрический аппарат удовлетворяет условию термической стойкости, если выполняется условие
,
(2.8)
где
- тепловой импульс (интеграл Джоуля)
тока КЗ в рассматриваемой цепи, А2
с;
- допустимое значение теплового
импульса (интеграла Джоуля) для
проверяемого аппарата, А2 с.
Допустимое значение
теплового импульса
для коммутационных аппаратов зависит
не только от указанного заводом-изготовителем
нормированного тока термической
стойкости
,
но и от соотношения между расчетной
продолжительностью тока КЗ
и допустимым временем термической
стойкости
[4].
Если
в этом случае допустимое значение
теплового импульса
равно
.
(2.9)
В том случае если
,
то допустимое значение теплового
импульса
равно
.
(2.10)