- •Теми обов’язкових домашніх завдань:
- •Література
- •Практическое занятие 1 Тема: Матрицы и действия над ними.
- •Домашняя работа 1
- •Практическое занятие 2 Тема: Определители.
- •Домашняя работа 2
- •Тема: Определители n-го порядка.
- •Тема: Определители n-го порядка.
- •Тема: Обращение матриц. Решение слау матричным способом.
- •Тема: Обращение матриц. Решение слау матричным способом.
- •Тема: Векторы и элементарные действия над ними.
- •Тема: Векторы и элементарные действия над ними.
- •Тема: Скалярное умножение векторов.
- •Тема: Скалярное умножение векторов.
- •Тема: Векторное и смешанное умножение векторов.
- •1. Две силы и приложены к точкам и соответственно. Определить суммарный момент этих сил относительно точки h .
- •Тема: Векторное и смешанное умножение векторов.
- •Тема: Декартовы системы координат. Площадь треугольника. Центр масс.
- •Тема: Декартовы системы координат. Площадь треугольника. Центр масс.
- •Тема: Составление уравнений геометрических мест точек.
- •Тема: Составление уравнений геометрических мест точек.
- •Тема: Прямая линия на плоскости. Угловые соотношения.
- •Тема: Прямая линия на плоскости. Угловые соотношения.
- •Тема: Уравнение прямой линии на плоскости. (2-е занятие).
- •Тема: Уравнение прямой линии на плоскости. (2-е занятие).
- •Тема: Уравнения прямой и окружности.
- •Тема: Уравнения прямой и окружности.
- •Тема: Контрольная работа № 3 (открытая версия)
- •Тема: Контрольная работа № 3(открытая версия)
- •Тема: Контрольная работа № 3(открытая версия)
- •Тема: Контрольная работа № 3 (открытая версия).
- •Тема: Контрольная работа № 3(открытая версия).
- •Тема: Контрольная работа № 3(открытая версия)
- •Тема: Контрольная работа № 3(открытая версия)
- •Тема: Контрольная работа № 3(открытая версия)
- •Тема: Эллипс.
- •Тема: Эллипс.
- •Тема: Эллипс, гипербола, парабола.
- •Тема: Эллипс, гипербола, парабола.
- •Тема: Самостоятельная работа (эллипс, гипербола, парабола).
- •1. Составить уравнения сопряженных диаметров эллипса, расположенных симметрично относительно оси абсцисс, если
- •Тема: Самостоятельная работа (эллипс, гипербола, парабола).
- •Тема: Самостоятельная работа (эллипс, гипербола, парабола).
- •Тема: Самостоятельная работа (эллипс, гипербола, парабола).
- •Тема: Самостоятельная работа (эллипс, гипербола, парабола).
- •1. Составить уравнения сопряженных диаметров эллипса, расположенных симметрично относительно оси ординат, если
- •Тема: Самостоятельная работа (эллипс, гипербола, парабола).
- •Тема: Самостоятельная работа (эллипс, гипербола, парабола).
- •Тема: Самостоятельная работа (эллипс, гипербола, парабола).
- •Тема: Плоскость в пространстве .
- •Тема: Плоскость в пространстве.
- •Тема: Плоскость в пространстве.
- •Тема: Плоскость в пространстве .
- •Тема: Плоскость в пространстве (самостоятельная работа).
- •Тема: Плоскость в пространстве (самостоятельная работа).
- •Тема: Плоскость в пространстве (самостоятельная работа).
- •Тема: Плоскость в пространстве (самостоятельная работа).
- •Тема: Прямая и плоскость в пространстве.
- •Тема: Прямая и плоскость в пространстве.
- •Тема: Итоговая контрольная работа (открытая версия).
- •Ответы ос___________ Тема: Итоговая контрольная работа (открытая версия).
- •Тема: Итоговая контрольная работа (открытая версия).
- •Ответы ос___________ Тема: Итоговая контрольная работа (открытая версия).
- •Тема: Итоговая контрольная работа (открытая версия).
- •Ответы ос___________ Тема: Итоговая контрольная работа (открытая версия).
- •Тема: Итоговая контрольная работа (открытая версия).
- •Ответы ос___________ Тема: Итоговая контрольная работа (открытая версия).
Тема: Плоскость в пространстве .
Вариант 3. Вариант 4.
01.
; 01.
;
;
;
02.
; 02.
;
;
;
03.
; 03.
;
;
;
04.
04.
![]()
05.
05.
АИГ=П/З № 21 ЗАДАНИЕ ОС___________
Тема: Плоскость в пространстве (самостоятельная работа).
Вариант 5. Вариант 6.
1.
Определить расстояние от точки
до плоскости, проходящей через точки
,
и делящей расстояние между точками
и
пополам,
если
![]()
2.
Через линию пересечения двух плоскостей
,
провести плоскость, проходящую через
точку A.
;
;
3.
Через линию пересечения двух плоскостей
,
провести плоскость, наиболее удаленную
от точки A.
;
;
4. Плоскость проходит на расстоянии 11-х единиц от начала координат. Составить уравнение плоскости, если известно, что она перпендикулярна двум заданным плоскостям
;
;
;
;
5. Составить уравнение плоскости, проходящей через ось OX и образующей с плоскостью
;
;
угол
в
.
АИГ=П/З № 21 ОТВЕТЫ ОС___________
Тема: Плоскость в пространстве (самостоятельная работа).
Вариант 5. Вариант 6.
01.
; 01.
;
,
;
;
02.
; 02.
;
;
;
03.
; 03.
;
;
;
04.
04.
![]()
05.
05.
![]()
АИГ=П/З № 21 ЗАДАНИЕ ОС___________
Тема: Плоскость в пространстве (самостоятельная работа).
Вариант 7. Вариант 8.
1.
Определить расстояние от точки
до плоскости, проходящей через точки

2.
Через линию пересечения двух плоскостей
,
провести плоскость, проходящую через
точку A.
;
;
3.
Через линию пересечения двух плоскостей
,
провести плоскость, наиболее удаленную
от точки A.
;
;
4. Плоскость проходит на расстоянии 3-х единиц от начала координат. Составить уравнение плоскости, если известно, что она перпендикулярна двум заданным плоскостям
;
;
;
;
5. Составить уравнение плоскости, проходящей через ось OZ и образующей с плоскостью
;
;
угол
в
.
АИГ=П/З № 21 ОТВЕТЫ ОС___________
Тема: Плоскость в пространстве (самостоятельная работа).
Вариант 7. Вариант 8.
01.
; 01.
;
;
;
02.
; 02.
;
;
;
03.
; 03.
;
;
;
04.
04.
![]()
05.
05.
![]()
АИГ=П/З № 22 ЗАДАНИЕ ОС___________
Тема: Прямая и плоскость в пространстве.
Вариант 1. Вариант 2.
1.
Составить уравнение прямой линии,
пересекающей заданные прямые линии
,
и проходящей через точку A.
;
;
2.
Найти точку Q,
симметричную с точкой
относительно прямой
;
;
3.
Найти точку Q,
симметричную с точкой
относительно плоскости
;
;
4. Найти расстояние между прямыми параллельными линиями
;
;
;
;
5. Найти расстояние между прямыми линиями
;
;
;
;
6.
Найти проекцию прямой линии
на плоскость
;
;
АИГ=П/З № 22 ОТВЕТЫ ОС___________
Тема: Прямая и плоскость в пространстве.
Вариант 1. Вариант 2.
01.
; 01.
;
02.
; 02.
;
03.
; 03.
;
04.
; 04.
;
05.
; 05.
;
06.
; 06.
;
; ![]()
;
;
АИГ=П/З № 23 ЗАДАНИЕ ОС___________
