2. Классификация событий
Рассмотрим простейший пример, который мы будем изучать с разных сторон в следующих двух параграфах первой лекции.
________________________
Пример
№ 1. Бросили
игральную (шестигранную) кость (один
раз). Найти вероятность того, что выпадет:
1) «
»;
2) чётное число; 3) нечётное число; 4) число,
меньшее «
».
Прелюдия к решению. Рассмотрим следующие элементарные события (возможно, на их основе представим нужные нам события):
- бросили
игральную кость и выпала «
»;
- бросили
игральную кость и выпала «
»;
- бросили
игральную кость и выпала «
»;
- бросили
игральную кость и выпала «
»;
- бросили
игральную кость и выпала «
»;
- бросили
игральную кость и выпала «
».
Теперь легко представить, что:
1) событие
,
состоящее в том, что бросили игральную
кость и выпала «
»,
есть событие
,
т.е.
;
2) событие
,
состоящее в том, что бросили игральную
кость, а выпало чётное число, представляет
собой множество, состоящее из трёх
событий,
;
3) событие
,
состоящее в том, что бросили игральную
кость, а выпало нечётное число, представляет
собой множество, состоящее из трёх
событий,
;
4) событие
,
состоящее в том, что бросили игральную
кость, а выпало число, меньшее
«
»,
представляет
собой множество, состоящее из четырёх
событий,
.
Чтобы научиться находить вероятности сложных событий, нужно провести их классификацию и научиться проводить операции над ними.
_________________________
Определение.
Сумма
конечного числа событий
–
событие, состоящее в наступлении хотя
бы одного из них.
Пример.
В примере № 1 событие
равно сумме событий
.
________________________
Определение.
Произведение
конечного числа событий
–
событие, состоящее в наступлении всех
этих событий.
Пример.
В примере № 1 событие
есть произведение событий
и
:
![]()
(математики экономят на знаке произведения).
________________________
Определение.
Противоположным событием
называется событие, состоящее в не
появлении события
.
Пример.
В примере № 1 событие
есть противоположное к событию
:
.
________________________
Рассмотрим важные для дальнейшего понятия.
Определение. Два события называются несовместными, если наступление одного из них исключает возможность наступления другого. В противоположном случае события называются совместными.
Пример.
В примере № 1 события
и
- несовместные, а события
и
- совместные.
________________________
Определение. События называются равновозможными (равновероятными), если вероятность наступления каждого из них одна и та же.
Пример.
В примере № 1 события
и
являются равновозможными, если кость
сделана без изъянов. Также следует
признать равновозможными и события
.
________________________
Определение. События называются элементарными, если их наступление нельзя связать с наступлением других событий в этом опыте.
Пример. Извлечение карты «Дама пик» из перемешанной колоды карт – событие элементарное.
________________________
Определение. События называются сложными, если их наступление в опыте можно связать с наступлением других событий в этом опыте.
Пример. Извлечение «пиковой карты» из перемешанной колоды карт – событие сложное, так как его наступление связано с рядом событий в этом опыте, а именно, извлечение «Туз пик», «Король пик», …
_______________________
Определение. События образуют полную группу, если при каждом испытании может появиться любое из них и не может появиться какое-либо иное (отличное от входящих в группу) событие.
Пример.
В примере № 1 события
и
образуют такую полную группу, если не
учитывать, что кость при бросании может
встать на ребро, исчезнуть (провалиться
под пол), …
________________________
Определение. Событие называется достоверным, если оно не может не произойти в условиях данного опыта.
Вероятность
достоверного события равна
,
т.к. для этого события
(напомним, что
).
Пример.
В примере № 1 событие
есть как раз
такое достоверное событие.
________________________
Определение. Событие, которое не может произойти в условиях данного опыта, называется невозможным событием.
Вероятность
невозможного события равна
,
т.к. для этого события
(а
).
Пример.
В примере № 1 событие, равное произведению
двух событий
,
является как раз невозможным событием.
Невозможное событие представляет собой
и событие, состоящее в выпадении
.
