Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
На экзамен 1.doc
Скачиваний:
0
Добавлен:
17.11.2018
Размер:
604.67 Кб
Скачать

3 Билет

1)Атомно-кристаллическое строение металла.

Металлы, описываемые пространственной кристаллической решеткой, под которой понимают наименший комплекс атомов, при многократной трансляции которых по всем направлениям воспроизводится пространственная кристаллическая решетка.

В узлах кристаллической решетки располагаются атомы.

Пространственную кристаллическую решетку легче всего представить в виде элементарной кристаллической ячейки. Ячейка – это та часть решетки, при многократной трансляции которой она и воспроизводится.

Три основные вектора элементарной ячейки называются трансляционными плоскими осевыми единицами.

Абсолютная величина трансляции – это период кристаллической решетки.

Период кристаллической решетки измеряют в анкстреммах

1А=10-8 см или в кХ (килоиксах), так называемых кристаллографических анкстреммах.

1кХ=1,00202 А

На одну элементарную ячейку приходится различное количество атомов; при чем атомы занимают определенные места в ячейке.

В зависимости от расположения атомов в ячейке различают простые, кубические, объемно-центрированные кубические, гранецентрированные кубические, гексагональные решетки.

1.Простая решетка представляется в виде куба, в узлах которой располагаются атомы.

Простейшая решетка описывается одним параметром, которым является ребро куба а.

2.Объемно-центрированная кубическая решетка (ОЦК) представляет собой также куб, внутри которого дополнительно расположен еще один атом.

Параметры решетки определяются длиной ребра куба а.

3.Гранецентрированная кубическая решетка (ГЦК) представляет собой куб, В центре каждой грани которого расположены дополнительно по одному атому.

4.Гексагональная плотно упакованная решетка. В отличие от кубической характеризуется двумя параметрами а и с.

В случае, если отношение с/а=1,666, то решетка считается плотноупакованной, а иначе – неплотно упакованной.

Примеры:

ОЦК – вольфрам, молибден, железо Fe;

ГЦК – алюминий, медь, никель, железо Fe;

ГПУ – бериллий … .

Некоторые металлы, например индий, имеют тетрагональную решетку.

Свойства металлов при прочих равных условиях определяются типом кристаллической решётки, т.е. количеством атомов, приходящихся на одну элементарную ячейку. На простую ячейку приходит с один полный атом.

На ОЦК ячейку приходится два атома: один атом вносится атомом и один принадлежит только этой ячейке.

Для ВЦК на одну ячейку приходится четыре атома.

Плотность кристаллической решетки определяется, так называемым координатным числом. Под координатным числом понимается число атомов, находящихся на кратчайшем расстоянии от данного атома. Для ОЦК решетки К=8, для ГЦК – К=12 и для ГПУ – К=12.

От величины координатного числа зависит компактность (плотность укладки) кристаллической решетки. Так в простой кристаллической решетки плотность укладки атомов в ячейке составляет менее 50%. В ОЦК – 50%, в решетках с координатным числом 12 – порядка 75%.

2)

3) Инструментальные стали и твердые сплавы.

Инструментальными наз. углер. и легир. стали обладающие высокой тв-тью 60…65HRC, прочностью, износостойкостью, красностойкостью и прим. для изготовл. различных инструментов: режущие, измерительные. Обычно это эвтектоидные или Л-ные стали, структура кот. после закалки и низкого отпуска представляет собой М и избыточные карбиды. Для инструментов требующих повыш. вязкости прим. доэвтектоидн. стали, кот. после закалки подвергаются отпуску при более высоких тем-рах с получ. структуры троостита или даже сорбита. Одна из главных хар-тик теплостойкость (красностойкость), т.е. сохранять высокую тв-ть при нагревании или сохранять устойчивость против отпуска при нагреве в процессе работы. Делятся на 3 группы: 1) углеродистые и легир. стали содерж. небольшое кол-во легир. эл-тов и необладающ. красностойкостью до 2000 (У7…У13, 9ХС); 2) легир. стали содерж. 0,6-0,7% С, 4-18% Cr, среднетеплостойкие, работают до 400-5000 (Х12, Х12М, 5ХНМ); 3) теплостойкие стали до 550-6500. это высоколегир. стали содерж. хром, ванадий, вольфрам, марганец, кобальт. Стали Л-ного класса наз. быстрорежущие (Р9, Р18, Р9К5). Твердые сплавы – металлокерамические материалы получ. методом порошковой металлургии – победит. t=8000. Сплавы 3 группы: 1) вольфрамовая группа – карбид вольфрама + кобальт (WC+Co) (ВК3, ВК10, ВК20); 2) TiC+WC+Co – (Т15К6); 3) TiC+TaC+WC+Co – (ТТ7К12). Иногда в конце марки буква: М – корбид вольфрама мелкий; В – крупнозернистый порошок; ОМ – особомелкий; ВК – особокрупный. Широко прим. пластинки без W. ТН20. Основа TiC и молибден (роль связки) 20%. КНТ16 – карбонитрит титана. Иногда пластинки подвергают покрытию TiC. Стойкость увелич. в 3-4 раза. Широко прим. сверхтвердые материалы – минералокерамич. сплавы на основе Al, нитрита бора, карбонитрита бора, (Белбор композит 2, Гексонит Р композит 10). Для чистовой обработки прим. алмазы. Чаще искусственные, такие как: Борт, Баллас, Карбонадо. Теплостойкость до 8000 при тем-ре выше – графитизируются.