Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы4.docx
Скачиваний:
32
Добавлен:
17.11.2018
Размер:
177.48 Кб
Скачать
  1. Комплексная форма гармонических колебаний. Сложение гармонических колебаний одинаковых и близких частот. Биения.

  1. Гармонический осциллятор. Уравнение динамики гармонических колебаний. Примеры гармонических осцилляторов: пружинный, физический и математический маятники.

Гармонический осциллятор — это система, которая при смещении из положения равновесия испытывает действие возвращающей силы , пропорциональной смещению :

Динамика простого гармонического движения. Для колебания в одномерном пространстве, учитывая Второй закон Ньютона (F = m d²x/dt²) и закон Гука (F = −kx, как описано выше), имеем линейное дифференциальное уравнение второго порядка: где m — это масса тела, x — его перемещение относительно положения равновесия, k — постоянная (коэф. жесткости пружины). Решение этого дифференциального уравнения является синусоидальным; одно из решений таково: x(t) = Acos(ωt + φ)

Примеры:

Груз на пружине. Масса m, прикреплённая к пружине с постоянной жёсткостью k является примером простого гармонического движения в пространстве. Формула показывает, что период колебаний не зависит от амплитуды и ускорения свободного падения.

Физический маятник —твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Математи́ческий ма́ятник —механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

  1. Затухающие колебания. Коэффициент затухания, время релаксации. Логарифмический декремент затухания.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой. Бесконечно длящийся процесс вида в природе невозможен.

Декрементом затухания называется отношение амплитуды затухающих колебаний в некоторый момент времени t к амплитуде тех же колебаний на период позже t + T: A(t)/A(t+T)=eβT

Декремент затухания характеризует, во сколько раз уменьшается амплитуда колебаний за один период.

Натуральный логарифм декремента затухания называется логарифмическим декрементом затухания

θ =ln(A(t)/A(t+T))=βT

Добротность колебательной системы Q характеризует относительное изменение энергии за один период. Добротность пропорциональна отношению энергии W(t) системы в некоторый момент времени t к изменению энергии W(t) – W(t + t) за последующий период T. Q=2π (W(t)/W(t) – W(+T))

  1. Вынужденные колебания. Амплитуда и фаза вынужденных колебаний. Резонанс. Резонансные характеристики осциллятора (добротность, избирательность).

Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени. Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону: .

Резона́нс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания.

Добро́тность — характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания. Общая формула для добротности любой колебательной системы: , где: f0 — резонансная частота колебаний, W — энергия, запасённая в колебательной системе, Pd — рассеиваемая мощность.