- •Числовая последовательность
- •Определение
- •Примеры
- •Операции над последовательностями
- •Подпоследовательности
- •Примеры
- •Свойства
- •Предельная точка последовательности
- •Предел последовательности
- •Некоторые виды последовательностей
- •Ограниченные и неограниченные последовательности
- •Критерий ограниченности числовой последовательности
- •Свойства ограниченных последовательностей
- •Бесконечно большие и бесконечно малые последовательности
- •Свойства бесконечно малых последовательностей
- •Сходящиеся и расходящиеся последовательности
- •Свойства сходящихся последовательностей
- •Монотонные последовательности
- •Фундаментальные последовательности
- •Предел числовой последовательности
- •История
- •Определение
- •Обозначения
- •Свойства
- •Свойства Арифметические свойства
- •Свойства сохранения порядка
- •Другие свойства
- •Предел на бесконечности по Коши
- •Окрестностное определение по Коши
- •Обозначения
- •Свойства пределов числовых функций
- •Примеры
- •Бесконечно малая и бесконечно большая
- •Исчисление бесконечно малых и больших
- •Бесконечно малая величина
- •Бесконечно большая величина
- •Свойства бесконечно малых
- •Сравнение бесконечно малых
- •Определения
- •Примеры сравнения
- •Эквивалентные величины Определение
- •Теорема
- •Примеры использования
- •Исторический очерк
- •Замечательные пределы
- •Первый замечательный предел
- •Второй замечательный предел
- •Раскрытие неопределённостей
- •Числовой ряд
- •Определение
- •Операции над рядами
- •Критерий абсолютной сходимости
- •«O» большое и «o» малое
- •Определения
- •Обозначение
- •Другие подобные обозначения
- •Примеры использования
- •История
- •Непрерывная функция
- •Определения
- •Комментарии
- •Связанные определения Точки разрыва
- •Свойства Локальные
- •Глобальные
- •Полунепрерывность
- •Односторонняя непрерывность
- •Непрерывность почти всюду
- •Производная функции
- •Геометрический и физический смысл производной Тангенс угла наклона касательной прямой
- •Скорость изменения функции
- •Производные высших порядков
- •Способы записи производных
- •Примеры
- •Правила дифференцирования
- •Производная вектор-функции по параметру
- •Примеры
- •Касательная прямая
- •Строгое определение
- •Замечание
- •Касательная как предельное положение секущей
- •Касательная к окружности
- •Свойства
- •Вариации и обобщения Односторонние полукасательные
Примеры
-
Функция, возвращающая константу, имеет предел в любой точке, в которой определена. Он равен этой константе.
![]()
-
Тождественная функция в любой точке, в которой определена, имеет предел равный этой точке.
![]()
-
Функция Дирихле не имеет предела ни в какой точке числовой прямой.
![]()
-
Функция
имеет
предел на бесконечности,
равный нулю.
![]()
-
Функция арктангенс имеет на плюс и минус бесконечности пределы плюс и минус пи пополам соответственно и, следовательно, не имеет предела на бесконечности.
![]()
![]()
![]()
Бесконечно малая и бесконечно большая
Бесконечно малая (величина) — числовая функция или последовательность, которая стремится к нулю.
Бесконечно большая (величина) — числовая функция или последовательность, которая стремится к бесконечности определённого знака.
|
Содержание
|
Исчисление бесконечно малых и больших
Исчисление бесконечно малых — вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Понятие бесконечно малой величины тесно связано с понятием предела.
Бесконечно малая величина
Последовательность an
называется бесконечно малой, если
.
Например, последовательность чисел
—
бесконечно малая.
Функция называется бесконечно малой
в окрестности точки x0, если
.
Функция называется бесконечно малой
на бесконечности, если
либо
.
Также бесконечно малой является функция,
представляющая собой разность функции
и её предела, то есть если
,
то f(x) − a = α(x),
.
Бесконечно большая величина
Во всех приведённых ниже формулах
бесконечность справа от равенства
подразумевается определённого знака
(либо «плюс», либо «минус»). То есть,
например, функция xsin x,
неограниченная с обеих сторон, не
является бесконечно большой при
.
Последовательность an
называется бесконечно большой, если
.
Функция называется бесконечно большой
в окрестности точки x0, если
.
Функция называется бесконечно большой
на бесконечности, если
либо
.
Свойства бесконечно малых
-
Сумма конечного числа бесконечно малых — бесконечно малая.
-
Произведение бесконечно малых — бесконечно малая.
-
Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.
-
Если an — бесконечно малая последовательность, сохраняющая знак, то
— бесконечно
большая последовательность.
