- •Числовая последовательность
- •Определение
- •Примеры
- •Операции над последовательностями
- •Подпоследовательности
- •Примеры
- •Свойства
- •Предельная точка последовательности
- •Предел последовательности
- •Некоторые виды последовательностей
- •Ограниченные и неограниченные последовательности
- •Критерий ограниченности числовой последовательности
- •Свойства ограниченных последовательностей
- •Бесконечно большие и бесконечно малые последовательности
- •Свойства бесконечно малых последовательностей
- •Сходящиеся и расходящиеся последовательности
- •Свойства сходящихся последовательностей
- •Монотонные последовательности
- •Фундаментальные последовательности
- •Предел числовой последовательности
- •История
- •Определение
- •Обозначения
- •Свойства
- •Свойства Арифметические свойства
- •Свойства сохранения порядка
- •Другие свойства
- •Предел на бесконечности по Коши
- •Окрестностное определение по Коши
- •Обозначения
- •Свойства пределов числовых функций
- •Примеры
- •Бесконечно малая и бесконечно большая
- •Исчисление бесконечно малых и больших
- •Бесконечно малая величина
- •Бесконечно большая величина
- •Свойства бесконечно малых
- •Сравнение бесконечно малых
- •Определения
- •Примеры сравнения
- •Эквивалентные величины Определение
- •Теорема
- •Примеры использования
- •Исторический очерк
- •Замечательные пределы
- •Первый замечательный предел
- •Второй замечательный предел
- •Раскрытие неопределённостей
- •Числовой ряд
- •Определение
- •Операции над рядами
- •Критерий абсолютной сходимости
- •«O» большое и «o» малое
- •Определения
- •Обозначение
- •Другие подобные обозначения
- •Примеры использования
- •История
- •Непрерывная функция
- •Определения
- •Комментарии
- •Связанные определения Точки разрыва
- •Свойства Локальные
- •Глобальные
- •Полунепрерывность
- •Односторонняя непрерывность
- •Непрерывность почти всюду
- •Производная функции
- •Геометрический и физический смысл производной Тангенс угла наклона касательной прямой
- •Скорость изменения функции
- •Производные высших порядков
- •Способы записи производных
- •Примеры
- •Правила дифференцирования
- •Производная вектор-функции по параметру
- •Примеры
- •Касательная прямая
- •Строгое определение
- •Замечание
- •Касательная как предельное положение секущей
- •Касательная к окружности
- •Свойства
- •Вариации и обобщения Односторонние полукасательные
Геометрический и физический смысл производной Тангенс угла наклона касательной прямой

![]()
Геометрический смысл производной. На графике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точки x0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло-серая линия C5). Расстояние Δx = x — x0 устремляется к нулю, в результате секущая переходит в касательную (постепенно темнеющие линии C5 — C1). Тангенс угла α наклона этой касательной — и есть производная в точке x0.
Основная статья: Касательная прямая
Если функция
имеет
конечную производную в точке x0,
то в окрестности U(x0) её
можно приблизить линейной
функцией
![]()
Функция fl называется
касательной к f в точке x0.
Число
является
угловым коэффициентом или тангенсом
угла наклона
касательной прямой.
Скорость изменения функции
Пусть s = s(t) — закон прямолинейного движения. Тогда v(t0) = s'(t0) выражает мгновенную скорость движения в момент времени t0. Вторая производная a(t0) = s''(t0) выражает мгновенное ускорение в момент времени t0.
Вообще производная функции y = f(x) в точке x0 выражает скорость изменения функции в точке x0, то есть скорость протекания процесса, описанного зависимостью y = f(x).
Производные высших порядков
Понятие производной произвольного порядка задаётся рекуррентно. Полагаем
![]()
Если функция f дифференцируема в x0, то производная первого порядка определяется соотношением
![]()
Пусть теперь производная n-го порядка f(n) определена в некоторой окрестности точки x0 и дифференцируема. Тогда
![]()
Если функция
имеет
в некоторой области D частную
производную по одной из переменных,
то названная производная, сама являясь
функцией от
может иметь в некоторой точке
частные
производные по той же или по любой другой
переменной. Для исходной функции
эти
производные будут частными производными
второго порядка (или вторыми частными
производными).
или ![]()
или ![]()
Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,
![]()
Способы записи производных
В зависимости от целей, области применения и используемого математического аппарата используют различные способы записи производных. Так, производная n-го порядка может быть записана в нотациях:
-
Лагранжа f(n)(x0), при этом для малых n часто используют штрихи и римские цифры:
f(1)(x0) = f'(x0) = fI(x0),
f(2)(x0) = f''(x0) = fII(x0),
f(3)(x0) = f'''(x0) = fIII(x0),
f(4)(x0) = fIV(x0), и т. д.
Такая запись удобна своей краткостью и широко распространена; однако штрихами разрешается обозначать не выше третьей производной.
-
Лейбница, удобная наглядной записью отношения бесконечно малых (только в случае, если x — независимая переменная; в противном случае обозначение верно лишь для производной первого порядка):
![]()
-
Ньютона, которая часто используется в механике для производной по времени функции координаты (для пространственной производной чаще используют запись Лагранжа). Порядок производной обозначается числом точек над функцией, например:
—
производная первого порядка x по t
при t = t0, или
—
вторая производная f по x в точке
x0 и т. д.
-
Эйлера, использующая дифференциальный оператор (строго говоря, дифференциальное выражение, пока не введено соответствующее функциональное пространство), и потому удобная в вопросах, связанных с функциональным анализом:
,
или иногда
.
-
В вариационном исчислении и математической физике часто применяется обозначение U с индексом x (без штрихов), что означает производная U по x.
Конечно, при этом необходимо не забывать, что служат все они для обозначения одних и те же объектов:

