
- •Введение
- •Основные полупроводниковые квантово размерные структуры
- •Условия наблюдения квантовых размерных эффектов
- •Структуры с двумерным электронным газом
- •1.2.1. Полупроводниковые и полуметаллические пленки
- •1.2.3. Гетероструктуры
- •1.2.4. Дельта-слои
- •1.2.5. Графен
- •1.3. Квантовые нити
- •1.4. Квантовые точки
- •1.5. Сверхрешетки
- •1.5.1. Полупроводниковые композиционные ср
- •1.5.2. Ср типа полуметалл-полупроводник
- •1.5.4. Легированные ср
- •1.5.5. Композиционно-легированные ср
- •1.5.6. Квазипериодические и непериодические ср
- •2. Энергетический спектр
- •2.1. Изолированные квантовые ямы, нити, точки
- •2.1.1. Квантовые ямы
- •2.1.2. Квантовые нити
- •2.1.3. Квантовые точки
- •2.2. Одномерные сверхрешетки
- •2.3. Локализованные состояния
- •2.4. Размерное квантование во внешних полях
- •2.4.1. Двумерные системы в магнитном поле
- •2.4.2. Квантовые ямы и сверхрешетки в электрическом поле
- •3. Плотность состояний и концентрация носителей заряда
- •3.1. Изолированные квантовые ямы и нити
- •3.2. Сверхрешетки
- •4. Оптические свойства
- •4.1. Общие положения
- •4.2. Межзонное поглощение в квантовых ямах и сверхрешетках
- •4.4. Межподзонное поглощение в квантовых ямах и сверхрешетках
- •4 Рис. 4.6. Спектр межподзонного ик–поглощения ср при условии слабого рассеяния – низких температур. .5. Фотодетекторы ик–излучения
- •5. Кинетические явления
- •5.1. Неравновесная функция распределения в низкоразмерных структурах
- •5.2. Планарный перенос в квантовых ямах
- •5.3. Вертикальный перенос в сверхрешетках
- •5.3.1. Область омической проводимости
- •5.3.2. Отрицательная дифференциальная проводимость в классических полях
- •5.3.3. Резонансное туннелирование в области
- •5.4. Баллистическая проводимость квантовых нитей
- •5.5. Квантовый эффект Холла в квантовых ямах
- •5.5.1. Классическая теория целочисленного кэх
- •5.5.2. Влияние эффектов локализации на кэх.
- •6. Резонансное туннелирование
- •6.1. Прохождение электронов в структурах с одиночными квантовыми ямами и потенциальными барьерами
- •6.1.1. Коэффициент пропускания и резонансное туннелирование электронов при прохождении над квантовой ямой
- •6.1.2. Коэффициент пропускания и резонансное туннелирование электронов при прохождении над потенциальным барьером
- •6.2. Туннелирование электронов через двухбарьерную квантовую структуру (дбкс)
- •6 Рис. 6.5. Потенциальный рельеф несимметричной дбкс с двумя резонансными энергетическими уровнями е1 и е2 в квантовой яме .2.1. Прохождение электромагнитных волн через резонатор
- •6.2.2 Энергетический спектр электронов в изолированной
- •6.2.3. Естественное и релаксационное уширения уровней энергии
- •6.2.4. Туннелирование электронов через дбкс в области резонансных значений энергии. Формула Лоренца
- •6.3. Резонансно-туннельный диод (ртд)
- •6.3.1. Строение и действие ртд
- •6.3.2. Вах и одп идеального ртд
- •6.3.3. Эквивалентная схема и максимальная частота генерации ртд
- •Заключение
- •Список литературы
- •Содержание
- •1. Основные полупроводниковые квантово-размерные
- •Учебное издание
- •Учебное пособие
1.2.4. Дельта-слои
Рис. 1.4. Зонная
диаграмма дельта-слоя [1].
Рис. 1.5. Двумерная
решетка графена [6].
1.2.5. Графен
Графеном называется принципиально новый материал – пленка из углерода толщиной в один атом (рис. 1.5), представляющая собой плоскую решетку из атомов углерода, соединенных в шестигранники (стопка таких слоев образовала бы графит) [6]. Графен прозрачен, но невероятно прочен [7]. Характерной особенностью графена является очень высокая подвижность носителей заряда и теплопроводность [8]. Создатели графена прочат ему большое будущее при создании новых материалов, а также суперкомпьютеров будущего, где размеры логических схем будут уменьшены в миллионы раз.
Свернутый в трубку лист графена представляет собой одну из модификаций этого удивительного вещества – нанотрубку (рис. 1.6.)
Рис.
1.7. Графан
[11].
Рис. 1.6. Один из
способов воображаемого изготовления
нанотрубки
из молекулярного
слоя графена [9].
Если поместить графен в газообразный водород и пропустить через газ электрический ток, молекулы водорода распадутся на атомы, которые присоединятся к исходному материалу, образуя новое вещество – графан. Атомы водорода присоединяются к атомам углерода поочередно: один сверху "листа", другой снизу, немного деформируя плоскую структуру исходного материала (рис. 1.7). В отличие от графена, который является проводником электрического тока, графан представляет собой диэлектрик. По мнению исследователей, данное свойство нового материала потенциально может быть использовано при производстве сверхминиатюрных транзисторов, поскольку позволяет решить одну из главных проблем развития графеновой электроники - сложность создания проводящих контуров. Добавление атомов водорода к графену позволит получать на нем регионы графана. Подобными регионами диэлектрика можно, например, разделить лист исходного материала на множество проводящих полос. Кроме этого новый материал может найти применение в водородной энергетике. В частности, международная группа исследователей установила, что нагрев графана приводит к высвобождению атомарного водорода. Напомним, что одной из основных проблем водородной энергетики является создание эффективных способов хранения водорода. Одним из наиболее перспективных направлений исследований является получение материалов, способных хранить "топливо" в связанном состоянии, в данном случае в виде графана [11].