Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 02 Тепловые процессы.doc
Скачиваний:
59
Добавлен:
12.11.2018
Размер:
15.3 Mб
Скачать
      1. Основные законы излучения

Закон Стефана-Больцмана. Количество тепла, излучаемого единицей поверхности тела в единицу времени, называют лучеиспускательной способностью тела Е, Вт/м2 :

. (7.38)

Как указывалось ранее, энергия излучения зависит от длины волн и температуры Т. Характеристикой энергии излучения по длинам волн служит интенсивность излучения I – лучеиспускательная способность тела в интервале длин волн от до  + d, отнесенная к этому интервалу d, т.е.

. (7.39)

Лучеиспускательная способность тела E является интегральной характеристикой, которая учитывает энергию излучения волн всех длин от λ = 0 до λ = ∞.

Следовательно,

. (7.40)

На основании электромагнитной теории света Планком аналитически была определена функциональная зависимость интенсивности излучения I0 от температуры и длины волн для абсолютно черного тела. Согласно этой зависимости

, (7.41)

где c1 – константа, равная 3,74∙10–16 Вт/м2; с2 – константа, равная 1,44∙10–2 (м∙К).

Интегрирование выражения (7.40) с учетом (7.41) дает зависимость для определения лучеиспускательной способности абсолютно черного тела Е0:

, (7.42)

где к0 – константа излучения абсолютно черного тела, к0 = 5,67∙10–8 Вт/(м2∙К4).

Зависимость (7.42) носит название закона Стефана–Больцмана, так как была найдена экспериментально Стефаном и подтверждена Больцманом до того, как Планк вывел соотношение (7.41).

Таким образом, согласно закону Стефана–Больцмана, лучеиспускательная способность абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры.

При проведении технических расчетов выражение (7.42) удобнее использовать в виде

, (7.43)

где С0 – коэффициент излучения абсолютно черного тела, равный Сk0∙10= 5,67 Вт/(м2∙К4).

Исследования показали, что закон Стефана-Больцмана применим не только к абсолютно черным телам, но и к серым. В этом случае его записывают в виде

(7.44)

(C по аналогии с абсолютно черным телом называют коэффициентом излучения серых тел).

Отношение коэффициентов излучения данного тела и абсолютно черного С/С0 =  носит название относительной излучательной способности или степени черноты данного тела. С учетом этого понятия закон Стефана-Больцмана принимает вид

. (7.45)

Рисунок 7.8 – К выводу закона Кирхгофа

Закон Кирхгофа устанавливает соотношение между лучеиспускательной и поглощательной способностями тел. Это соотношение может быть получено из рассмотрения процесса обмена лучистой энергией между абсолютно черным и серым телами (рис. 7.8).

Поверхности рассматриваемых тел параллельны и расположены на расстоянии, при котором излучение каждого из тел попадает на другое. Абсолютно черное тело имеет температуру T0, лучеиспускательную способность E0 и поглощательную A= 1, серое тело имеет соответственно Т, Е и А, при этом Т T0. Излучение Е попадает на абсолютно черное тело и целиком им поглощается. Излучение E0 попадает на серое тело. При этом часть этого излучения, равная E0А, поглощается, а другая часть, равная E0(1 – А), отражается на абсолютно черное тело и поглощается им. В результате этого обмена абсолютно черное тело получает суммарное количество энергии:

. (7.46)

При выравнивании температур обоих тел наступает тепловое равновесие, при котором = 0, т.е. . Следовательно,

. (7.47)

Последнее соотношение является математическим выражением закона Кирхгофа, согласно которому отношение лучеиспускательной способности тел к их поглощательной способности для всех тел одинаково, равно лучеиспускательной способности абсолютно черного тела при той же температуре и зависит только от температуры.

В результате подстановки значений E и E0 из равенств (7.44) и (7.45) в соотношение (7.47) получаем

. (7.48)

Рисунок 7.9 – К формулировке закона Ламберта

Так как , то , т.е. способность тела к поглощению излучения численно равна степени его черноты. Учитывая, что  и A изменяются в пределах от 0 до 1, из равенства (7.47) следует, что лучеиспускательная способность реального тела всегда меньше лучеиспускательной способности абсолютно черного тела при той же температуре.

Закон Ламберта определяет изменение интенсивности излучения по различным направлениям. Согласно этому закону излучение энергии элементом поверхности в направлении элемента (рис. 7.9) пропорционально излучению dQ (по направлению нормали к ), телесному углу dψ (под которым виден элемент из элемента ) и косинусу угла φ, образованного прямой, соединяющей элементы и , и нормалью к элементу .

При этом лучеиспускательная способность в направлении нормали в  раз меньше полной лучеиспускательной способности тела.

Таким образом, количество энергии, излучаемой элементом в направлении элемента :

. (7.49)