- •Раздел іі тепловые процессы
- •Основы теплопередачи
- •Основные понятия и определения
- •Теплофизические свойства веществ
- •Тепловые балансы
- •Теплопроводность
- •Уравнение Фурье. Коэффициент теплопроводности
- •Дифференциальное уравнение теплопроводности
- •Теплопроводность плоской, цилиндрической и сферической стенок при стационарном режиме
- •Тепловое излучение
- •Основные законы излучения
- •Теплообмен между твердыми телами при излучении
- •Тепловое излучение газов и паров
- •Конвективный теплообмен
- •Дифференциальное уравнение конвективного теплообмена
- •Тепловое подобие
- •Теплоотдача без изменения агрегатного состояния теплоносителя
- •Теплоотдача при изменении агрегатного состояния теплоносителя
- •Теплоотдача в дисперсных системах с твердой фазой
- •Сложная теплоотдача
- •Численные значения коэффициентов теплоотдачи
- •Гидродинамический и тепловой пограничные слои
- •Теплопередача
- •Основное уравнение теплопередачи. Коэффициент теплопередачи
- •Теплопередача через плоские, цилиндрические и сферические стенки при установившемся процессе
- •Средняя движущая сила теплопередачи
- •Тепловая изоляция
- •Нестационарный теплообмен
- •Список литературы к главе 7
- •Нагревание, охлаждение, конденсация
- •Нагревание
- •Нагревание водяным паром и горячей водой
- •Нагревание топочными газами
- •Нагревание высокотемпературными теплоносителями
- •Нагревание электрическим током
- •Охлаждение
- •Конденсация
- •Конструкции и расчет теплообменных аппаратов
- •Поверхностные теплообменники
- •Смесительные теплообменные аппараты
- •Расчет теплообменных аппаратов
- •Проектный расчет рекуперативных теплообменников
- •Поверочный расчет рекуперативных теплообменников
- •Расчет регенеративных теплообменников
- •Расчет теплообменников смешения
- •Сравнительная оценка и выбор конструкций теплообменных аппаратов
- •Список литературы к главе 8
- •Основные принципы интеграции тепловых процессов
- •Состав, структура и иерархия химико-технологической системы
- •Химико-технологическая система как объект проектирования
- •Введение в пинч-анализ
- •Построение составных кривых технологических потоков и определение энергетических целей
- •Построение составных кривых потоков хтс
- •«Точка пинча» потоков хтс
- •Деление тепловых потоков хтс
- •Представление сети теплообменных аппаратов
- •Проектирование тепловой сети с максимальной рекуперацией энергии
- •Список литературы к главе 9
- •Выпаривание
- •Общие сведения
- •Некоторые основные свойства растворов
- •Принцип работы выпарного аппарата
- •Однокорпусные выпарные установки
- •Выпарные аппараты непрерывного действия
- •Материальный баланс
- •Тепловой баланс
- •Поверхность нагрева выпарного аппарата
- •Потери полезной разности температур
- •Выпарные аппараты периодического действия
- •Выпаривание при переменном уровне раствора в аппарате
- •Выпаривание при постоянном уровне раствора в аппарате
- •Выпаривание при постоянном весе раствора в аппарате
- •Многокорпусные выпарные установки
- •Типовые схемы многокорпусных выпарных установок
- •Материальный баланс многокорпусной выпарной установки
- •Общая полезная разность температур выпарной установки
- •Распределение полезной разности температур по корпусам выпарной установки
- •Полезная разность температур при равной поверхности нагрева корпусов
- •Полезная разность температур при минимальной суммарной поверхности нагрева корпусов
- •Полезная разность температур при равной поверхности нагрева корпусов при минимальной общей поверхности нагрева
- •Распределение общего перепада давления между корпусами по заданным давлениям вторичного пара
- •Число корпусов выпарной установки
- •Последовательность расчета многокорпусных выпарных установок
- •Основные направления повышения экономической эффективности выпарных установок
- •Интенсификация тепло- и массообмена
- •Утилизация вторичных энергоресурсов
- •Выпаривание с тепловым насосом
- •Улучшение эксплуатационных характеристик выпарных установок
- •Комбинирование выпаривания с другими технологическими процессами
- •Выпарные установки мгновенного испарения
- •Конструкции выпарных аппаратов
- •Выпарные аппараты с естественной циркуляцией
- •Выпарные аппараты с принудительной циркуляцией
- •Пленочные выпарные аппараты
- •Основы теплового расчета выпарных аппаратов
- •Роторные тонкопленочные испарители
- •Выпарные аппараты погружного горения
- •Список литературы к главе 10
- •Содержание
- •Раздел I. Гидромеханические процессы
- •Глава 7 Основы теплопередачи 108
- •Глава 8 Нагревание, охлаждение, конденсация 226
- •Глава 9 основные принципы интеграции тепловых процессов 302
- •Глава 10 выпаривание 338
- •Раздел II. Тепловые процессы
- •Глава 7 Основы теплопередачи 108
- •Глава 8 Нагревание, охлаждение, конденсация 226
- •Глава 9 основные принципы интеграции тепловых процессов 302
- •Глава 10 выпаривание 338
-
Сложная теплоотдача
Разделение общего процесса переноса тепла на элементарные – теплопроводность, конвекцию и тепловое излучение – является лишь методическим приемом. В действительности эти явления протекают одновременно и, естественно, влияют друг на друга. Конвекция, например, всегда сопровождается теплопроводностью или лучеиспусканием; теплопроводность в пористых телах – конвекцией и лучеиспусканием в порах, а лучеиспускание – теплопроводностью и конвекцией.
В практических расчетах разделение таких сложных процессов на элементарные не всегда возможно и целесообразно. Обычно результат одновременного действия отдельных элементарных процессов приписывают одному из них, которое принимают главным. Влияние же остальных сказывается лишь на величине количественной характеристики основного.
Если теплообмен происходит между твердой стенкой и газообразной средой (например, воздухом), то тепло передается совместно конвекцией и излучением. Такой процесс переноса тепла получил название сложной теплоотдачи. Типичным примером сложной теплоотдачи являются потери тепла стенками аппаратов в окружающую среду.
Количество
тепла, отдаваемое стенкой в единицу
времени омывающему ее газу, за счет
конвективного теплообмена составит
,
а за счет теплового излучения
.
Если ввести обозначения
, (7.131)
где
– коэффициент теплоотдачи при
лучеиспускании, то количество тепла,
переданное излучением, выразится
равенством
. (7.132)
Общее количество тепла, отданное стенкой в единицу времени, составит:
, (7.133)
либо
,
где
–
приведенный коэффициент теплоотдачи,
показывающий, какое количество тепла
отдает 1 м2 стенки в окружающую
среду в единицу времени при разности
температур стенки и среды 1 С
за счет конвективного теплообмена и
теплового излучения.
В
инженерных расчетах
часто определяют
приближенно по эмпирическим уравнениям.
Например, при расчете тепла, теряемого
наружной поверхностью аппаратов,
находящихся в закрытых помещениях, в
окружающую среду,
можно рассчитать, пользуясь уравнением
, (7.134)
где
– температура наружной поверхности
стенки аппарата. Это уравнение применимо
в пределах изменения
50350 С.
Для уменьшения потерь тепла в окружающую среду аппараты и трубопроводы покрывают слоем тепловой изоляции.
-
Численные значения коэффициентов теплоотдачи
Чтобы произвести приближенный расчет теплообмена, не располагая расчетными уравнениями и точными сведениями о значениях свойств веществ, а также оценить результаты расчетов, произведенных по теоретическим или эмпирическим формулам, необходимо располагать хотя бы приближенными значениями коэффициентов теплоотдачи. Ниже приводятся ориентировочные пределы значений коэффициентов теплоотдачи в промышленных теплообменных аппаратах.
При нагревании и охлаждении Вт/м2∙К
воздуха 1,16 – 58
псевдоожиженного слоя 200 – 400
перегретого пара 23,2 – 116
масел 58 – 1740
воды 232 –11600
При кипении воды 580 – 52200
При пленочной конденсации водяных паров 4600 – 17400
При капельной конденсации водяных паров 4600 – 140000
При конденсации паров органических жидкостей 580 – 2320
