- •Андреев м. В. Конспект лекций по курсу "основы экологии"
- •Содержание
- •1. Предмет экологии 5
- •1.1.2. Предмет экологии 5
- •2. Понятие об экосистемах и их место в организации биосферы 18
- •3. Экологические факторы и понятие об экологической нише 40
- •4. Популяция как компонент экосистемы 52
- •5. Развитие и эволюция экосистем 83
- •6. Биосфера и ее эволюция 91
- •7. Электромагнитные поля и природные системы 101
- •Предисловие
- •Предмет экологии
- •Предмет экологии и его место в системе других дисциплин
- •Актуальность изучения экологии
- •Предмет экологии
- •Генезис экологической мысли
- •Объекты изучения экологии
- •Системность в экологии
- •Классификация в экологии
- •Задачи экологии
- •Экология и охрана природы, экология как научная база природопользования
- •Необходимость и особенности экологического образования
- •Роль и место экологического образования в системе подготовки радиофизиков
- •Основные экологические определения и понятия
- •Понятие об экосистемах и их место в организации биосферы
- •Концепция экосистемы
- •Определение экосистемы
- •Краткая история термина «экосистема»
- •Гомеостаз и открытость экосистем
- •Структура биогеоценоза и экосистемы
- •Структура водной и наземной экосистем
- •Кибернетическая природа и стабильность экосистем
- •Энергия в экосистемах и продуктивность экосистем
- •Поток энергии в экосистемах и жизнь как термодинамический процесс
- •Универсальная модель потока энергии
- •Энергетические характеристики биосферы
- •Концепция энергетической субсидии
- •Использование первичной продукции человеком
- •Пищевые цепи, пищевые сети и трофические уровни
- •Концентрация токсичных соединений при продвижении по пищевым цепям
- •Качество энергии
- •Метаболизм и размеры особей
- •Трофическая структура и экологические пирамиды
- •Трофическая структура экосистемы
- •Теория сложности. Закон уменьшения отдачи и концепция поддерживающей ёмкости среды
- •Энергетическая классификация экосистем
- •Круговорот веществ в биосфере. БиОгеохИмиЧеские циклы
- •Круговорот веществ в биосфере
- •Экологические факторы и понятие об экологической нише
- •Понятие экологического фактора
- •Понятие экологического фактора и их классификация
- •Пространство экологических факторов и функция отклика организмов на совокупность экологических факторов
- •Закон лимитирующего фактора
- •Некоторые основные абиотические факторы
- •Биотические факторы
- •Понятие об экологической нише и жизненной форме
- •Понятие экологической ниши
- •Адаптация живых организмов к экологическим факторам
- •Популяция как компонент экосистемы
- •Популяция, ее структура и динамика
- •Понятие популяции в экологии
- •Плотность и численность популяций
- •Возрастной состав популяции
- •Пространственная структура популяции
- •Закономерности динамики популяций. Описание популяций на уровне полного внуприпопуляционного агрегирования
- •Биоценоз экосистемы
- •Динамика биоценоза как результат межвидовых взаимодействий
- •Видовое разнообразие стационарных биоценозов
- •Динамика популяций в биоценозах
- •Классификация биотических взаимодействий
- •Аменсализм (-, 0)
- •Конкуренция в широком смысле или интерференция (-, -)
- •Понятие экологической ниши и уравнения конкуренции
- •Управление численностью видов в экосистемах
- •Развитие и эволюция экосистем
- •Стратегия развития экосистемы
- •Экологическая сукцессия
- •Тенденции изменения основных характеристик экосистем
- •Концепция климакса
- •Основные экологические законы
- •Биосфера и ее эволюция
- •Биосфера Земли
- •Общие свойства биосферы
- •Состав и функционирование биосферы
- •Эволюция биосферы
- •Природная среда и природные ресурсы
- •Электромагнитные поля и природные системы
- •Электромагнитные поля как один из абиотических и антропогенных экологических факторов
- •Естественные и искусственные источники электромагнитных полей в средах обитания организмов
- •Электрическое поле Земли
- •Магнитное поле Земли
- •Атмосферики
- •Радиоизлучения Солнца и галактик
- •Эмп промышленных источников
- •«Радиофон»
- •Компьютерное электромагнитное загрязнение
- •Действие электромагнитного излучения на вещество и ткани живых организмов
- •Свойства тканей в постоянных полях
- •Дисперсия свойств тканей в переменных полях
- •Поглощение энергии эмп в тканях и преобразование ее в тепловую
-
Конкуренция в широком смысле или интерференция (-, -)
Конкуренцией в широком смысле (предпочтительнее употреблять термин «интерференция») называют любое взаимно отрицательное отношение между видами. Её частными случаями являются: 1) конкуренция (в узком смысле слова) за тот или иной ограниченный ресурс (соперничество); 2) взаимное аллелопатическое ингибирование (антагонизм) и 3) непосредственная «борьба» между представителями разных видов (агрессия).
Вначале рассмотрим простейшую модель взаимодействия двух видов в условиях конкуренции за общий ресурс (пищу). Выразим коэффициент прироста каждой из популяций в виде
ri
=
-
(i
= 1, 2),
где
– положительный коэффициент,
характеризующий потребность в пище
каждого из видов; F(x1,
x2)
– скорость потребления пищи. Предположим,
что функция F(x1,
x2)
обращается в нуль при x1
= 0 и x2
= 0 и монотонно
неограниченно возрастает по каждой из
переменных.
Тогда динамика развития популяций может быть описана системой дифференциальных уравнений
![]()

.
Перепишем её в виде
![]()

.
Исключая отсюда функцию F(x1, x2), получим
![]()
или
.
Решение этого уравнения имеет вид
,
где
и
– численности популяций в начальный
момент времени t
= 0.
Прежде
всего, следует отметить, что указанные
решения системы должны быть ограничены
на бесконечности, то есть при
.
Это связано с тем, что в силу монотонного
неограниченного возрастания функции
по каждой из переменной при
обязательно наступит момент, когда
скорость изменения xi
станет меньше нуля, то есть xi
начнет
убывать.
.
Для
дальнейшего анализа полученного решения
положим для определенности, что
.
Тогда отношение
будет бесконечно возрастать, то есть
.
Отсюда в силу ограниченности x1
и x2
получаем, что
.
Это
означает, что численность второй
популяции, для которой значение
меньше, убывает, стремясь к нулю, в то
время, как численность первой стремится
к значению, определяемому из уравнения
.
Это подтверждает интуитивный вывод о
том, что исчезает вид, обладающий меньшим
коэффициентом естественного прироста
и более чувствительный к нехватке пищи.
Полученные результаты также подтверждают известный принцип Гаузе, согласно которому два вида с одинаковыми экологическими потребностями не могут сосуществовать в одном месте обитания.
Необязательно два конкурирующих вида не могут сосуществовать вместе и один из видов должен исчезнуть. Указанный результат был получен для простейшей модели, не учитывающей саморегуляцию численности видов. Рассмотрим случай конкуренции с саморегуляцией, описываемой логистическим уравнением, когда взаимодействие видов несимметрично и описывается линейной функцией вида
;
.
Это так называемая модель Лотки-Вольтерра для двухвидовой системы с конкуренцией

где
ri
– удельная
скорость роста и Ki
– ёмкость среды для i-го
вида при отсутствии конкуренции, а
положительные безразмерные коэффициенты
а12
и а21
служат мерой относительного влияния
видов друг на друга;
(i
=1,2; ij).
Поведение
решений данной системы удобно
охарактеризовать с помощью метода
фазовых портретов на плоскости с
координатами (x1,
x2).
В каждой точке траектории решения
(x1(t),
x2(t))
на фазовой плоскости может быть отображён
вектор скорости, имеющий координаты
,
то есть правые части системы дифференциальных
уравнений
определяют вектор скорости.
Как видно из указанной системы, знаки производных dx1/dt и dx2/dt совпадают со знаками линейных функций
l1(x1, x2) = k1 - x1 - a12x2
l2(x1, x2) = k2 - x2 - a21x1
и эти же линейные функции определяют на фазовой плоскости геометрическое место точек, где указанные производные обращаются в нуль, в виде линейных уравнений:
|
l1(x1, x2) = k1 - x1 - a12x2 = 0 x1 = k1 - a12x2 |
|
l2(x1, x2) = k2 - x2 - a21x1 = 0 x2 = k2 - a21x1 . |
При
этом производная
будет положительной под
прямой li(x1,
x2)
= 0, равной
нулю – на прямой, и отрицательной – над
ней. Используя эти данные, в каждой точке
(x1,
x2)
мы можем качественно определить
направление движения на проходящей
через неё траектории.
Если пренебречь вырожденными случаями параллельности и совпадения, то возможны следующие четыре варианта взаимного расположения прямых l1 и l2 на фазовой плоскости:
1.
Прямая l1
располагается целиком выше l2,
то есть
и
,
что эквивалентно
и
.
Первый вид как более сильный конкурент
всегда будет вытеснять второй, независимо
от их начальных численностей
(
).
|
|
|
2.
Прямая
l2
целиком лежит выше l1,
то есть
и
,
что эквивалентно
и
.
Всегда побеждает второй вид.
|
|
|
3.
Прямые l1
и l2
пересекаются в положительном квадранте
и при этом l1
падает круче, чем l2,
то есть
и
,
что эквивалентно
и
.
Существует единственное положение
равновесия
(
),
координаты которого удовлетворяют
системе линейных уравнений

и равны

и
которое устойчиво, так что из любого
начального состояния
система с
течением времени переходит в равновесное
состояние
(
),
характеризуемое нулевыми численностями
обоих видов.
|
|
|
4.
Прямые l1
и l2
пересекаются в положительном квадранте
так, что l2
падает круче, чем l1
то есть
и
,
что эквивалентно
и
.
Исход конкуренции определяется начальным
соотношением численностей, в зависимости
от начального соотношения плотностей
произойдёт
вытеснение первого или второго вида.
|
|
|








