- •Андреев м. В. Конспект лекций по курсу "основы экологии"
- •Содержание
- •1. Предмет экологии 5
- •1.1.2. Предмет экологии 5
- •2. Понятие об экосистемах и их место в организации биосферы 18
- •3. Экологические факторы и понятие об экологической нише 40
- •4. Популяция как компонент экосистемы 52
- •5. Развитие и эволюция экосистем 83
- •6. Биосфера и ее эволюция 91
- •7. Электромагнитные поля и природные системы 101
- •Предисловие
- •Предмет экологии
- •Предмет экологии и его место в системе других дисциплин
- •Актуальность изучения экологии
- •Предмет экологии
- •Генезис экологической мысли
- •Объекты изучения экологии
- •Системность в экологии
- •Классификация в экологии
- •Задачи экологии
- •Экология и охрана природы, экология как научная база природопользования
- •Необходимость и особенности экологического образования
- •Роль и место экологического образования в системе подготовки радиофизиков
- •Основные экологические определения и понятия
- •Понятие об экосистемах и их место в организации биосферы
- •Концепция экосистемы
- •Определение экосистемы
- •Краткая история термина «экосистема»
- •Гомеостаз и открытость экосистем
- •Структура биогеоценоза и экосистемы
- •Структура водной и наземной экосистем
- •Кибернетическая природа и стабильность экосистем
- •Энергия в экосистемах и продуктивность экосистем
- •Поток энергии в экосистемах и жизнь как термодинамический процесс
- •Универсальная модель потока энергии
- •Энергетические характеристики биосферы
- •Концепция энергетической субсидии
- •Использование первичной продукции человеком
- •Пищевые цепи, пищевые сети и трофические уровни
- •Концентрация токсичных соединений при продвижении по пищевым цепям
- •Качество энергии
- •Метаболизм и размеры особей
- •Трофическая структура и экологические пирамиды
- •Трофическая структура экосистемы
- •Теория сложности. Закон уменьшения отдачи и концепция поддерживающей ёмкости среды
- •Энергетическая классификация экосистем
- •Круговорот веществ в биосфере. БиОгеохИмиЧеские циклы
- •Круговорот веществ в биосфере
- •Экологические факторы и понятие об экологической нише
- •Понятие экологического фактора
- •Понятие экологического фактора и их классификация
- •Пространство экологических факторов и функция отклика организмов на совокупность экологических факторов
- •Закон лимитирующего фактора
- •Некоторые основные абиотические факторы
- •Биотические факторы
- •Понятие об экологической нише и жизненной форме
- •Понятие экологической ниши
- •Адаптация живых организмов к экологическим факторам
- •Популяция как компонент экосистемы
- •Популяция, ее структура и динамика
- •Понятие популяции в экологии
- •Плотность и численность популяций
- •Возрастной состав популяции
- •Пространственная структура популяции
- •Закономерности динамики популяций. Описание популяций на уровне полного внуприпопуляционного агрегирования
- •Биоценоз экосистемы
- •Динамика биоценоза как результат межвидовых взаимодействий
- •Видовое разнообразие стационарных биоценозов
- •Динамика популяций в биоценозах
- •Классификация биотических взаимодействий
- •Аменсализм (-, 0)
- •Конкуренция в широком смысле или интерференция (-, -)
- •Понятие экологической ниши и уравнения конкуренции
- •Управление численностью видов в экосистемах
- •Развитие и эволюция экосистем
- •Стратегия развития экосистемы
- •Экологическая сукцессия
- •Тенденции изменения основных характеристик экосистем
- •Концепция климакса
- •Основные экологические законы
- •Биосфера и ее эволюция
- •Биосфера Земли
- •Общие свойства биосферы
- •Состав и функционирование биосферы
- •Эволюция биосферы
- •Природная среда и природные ресурсы
- •Электромагнитные поля и природные системы
- •Электромагнитные поля как один из абиотических и антропогенных экологических факторов
- •Естественные и искусственные источники электромагнитных полей в средах обитания организмов
- •Электрическое поле Земли
- •Магнитное поле Земли
- •Атмосферики
- •Радиоизлучения Солнца и галактик
- •Эмп промышленных источников
- •«Радиофон»
- •Компьютерное электромагнитное загрязнение
- •Действие электромагнитного излучения на вещество и ткани живых организмов
- •Свойства тканей в постоянных полях
- •Дисперсия свойств тканей в переменных полях
- •Поглощение энергии эмп в тканях и преобразование ее в тепловую
-
Трофическая структура и экологические пирамиды
-
Трофическая структура экосистемы
Влияние такого фактора, как зависимость метаболизма от размеров особи, на интенсивность дыхания на каждом трофическом уровне приводит к формированию для каждой конкретной экосистемы определённой трофической структуры, которая часто служит характеристикой типа экосистемы (озера, леса, кораллового рифа, пастбища и т. п.). Трофическую структуру выражают либо урожаем на корню, либо количеством энергии, фиксируемым на каждом трофическом уровне.
Трофическую структуру можно изобразить графически в виде экологических пирамид, основанием которых служит первый уровень (уровень продуцентов), а последующие уровни образуют этажи и вершину пирамиды. Первая пирамида была построена Чарльзом Элтоном и носила название "пирамида чисел". Пирамиды наглядно иллюстрируют соотношение биомасс и эквивалентных им энергий в каждом звене пищевой цепи и используются практических расчётах при обосновании, например, необходимых площадей под сельскохозяйственные культуры, с тем, чтобы обеспечить кормами скот, а следовательно, потребность населения в животном белке.
Различают три основных типа экологических пирамид:
-
пирамида численностей, отражающая численность отдельных организмов на каждом трофическом уровне;
-
пирамида биомассы, характеризующая общую сухую массу, калорийность или другую меру общего количества живого вещества на каждом трофическом уровне;
-
пирамида энергии, показывающая величину потока энергии и/или ''продуктивность'' на последовательных трофических уровнях.
Пирамиды численностей и биомассы могут быть обращёнными, то есть основание может быть меньше, чем один или несколько верхних этажей. Так бывает, когда средние размеры продуцентов меньше размеров консументов. Напротив, энергетическая пирамида всегда будет сужаться кверху при условии, что мы учитываем все источники пищевой энергии в системе.
Ниже приведены примеры экологических пирамид.
-
Пирамида численностей (численность особей на 0.1 га)
С3 - 1 С3 - 2
С2 - 90000 С2 - 120000
С1 - 200000 С1 - 150000
Р - 1500000 Р - 200
Лугопастбищное общество Лес умеренной зоны
-
Пирамида биомассы (сухая масса в г на 1 м2)
С2 - 11
С1 - 21 С1 - 11 С1 - 132
Р - 4 Р - 96 Р - 703
Пролив Ла-Манш Озеро в Висконсине Коралловый риф
-
Пирамида энергий (поток энергии на м2 в год)
Прибавка тканей
Сапротрофы С3-21 человека 3.5·104Дж
(бактерии и грибы) Продуцировано телятины
С3 - 383 5·106Дж
S - 5060 С1 - 3368 Продуцировано
люцерны 6,2·107Дж
Р - 20810 Получено
солнечного света 2.6·1011Дж
Лес Силвер-Спрингс Сельскохозяйственная агроэкосистема
(поток энергии, ккал/м2год) (поток энергии, Дж/м2год)
Пирамида численностей существенным образом зависит от размеров организмов, что иногда искажает пропорции потока энергии/биомассы снизу вверх. Таким образом, форма пирамиды численностей сильно различается для разных сообществ в зависимости от того, малы (фитопланктон, трава) или велики (дубы) в них продуценты.
В общем случае пирамида биомасс лучше показывает соотношения урожаев на корню для экологических групп в целом. В системах с очень маленькими продуцентами и крупными консументами общая масса последних может быть выше, что приводит к обращению пирамиды биомасс. Однако это не нарушает общий закон для энергии: через уровень продуцентов проходит больше энергии, чем через уровни консументов. Низкая биомасса продуцентов связана с тем, что интенсивный обмен и быстрый оборот мелких организмов продуцентов обуславливают в результате большую продукцию, но малый урожай на корню. Обращённые пирамиды биомасс характерны для озёр и морей.
Из трёх типов экологических пирамид пирамида энергии даёт наиболее полное представление о функциональной организации сообществ. Число и масса организмов, которых может поддерживать какой-либо уровень, зависит не от количества фиксированной на предыдущем уровне энергии, а от скорости продуцирования пищи. В противоположность пирамидам численностей и биомассы, отражающим статику системы, пирамида энергии отражает картину скоростей прохождения массы пищи через пищевую цепь. Форма этой пирамиды диктуется вторым законом термодинамики.
Концепция потоков энергии не только позволяет сравнивать экосистемы между собой, но и дает средство для оценки относительной роли популяций в их биотических сообществах. Так, например, популяции, находящиеся на одном трофическом уровне, характеризуются примерно одинаковым потоком энергии через них при резком отличном их количестве и биомассе.
Рассмотрим пример для трёх популяций, являющихся первичными консументами.
Тип оценочного параметра |
Количество |
Биомасса |
Поток энергии |
Единица измерения |
(особи/м2) |
(г/м2) |
(ккал/м2сут) |
Почвенные бактерии |
1012 |
0.001 |
1.0 |
Кузнечики |
10 |
1.0 |
0.4 |
Олени |
10-5 |
1.1 |
0.5 |
Численность в этом примере варьирует на 17 порядков, биомасса – на три порядка, а поток энергии – лишь в два раза. Это сравнительное единообразие потоков энергии свидетельствует о том, что все эти популяции в своих сообществах относятся к одному трофическому уровню, хотя если судить по численности или биомассе, то этого предположить нельзя.
Справедливо следующее “экологическое правило”: данные по численности приводят к переоценке значения мелких организмов, а данные по биомассе – к переоценке роли крупных организмов. Следовательно, эти критерии непригодны для сравнения функциональной роли популяций, сильно различающихся по отношению интенсивности метаболизма к размеру особи, хотя, как правило, биомасса всё же более надёжный критерий, нежели численность. Вместе с тем поток энергии служит более подходящим показателем для сравнения любого компонента экосистемы с другим и всех между собой.