- •Андреев м. В. Конспект лекций по курсу "основы экологии"
- •Содержание
- •1. Предмет экологии 5
- •1.1.2. Предмет экологии 5
- •2. Понятие об экосистемах и их место в организации биосферы 18
- •3. Экологические факторы и понятие об экологической нише 40
- •4. Популяция как компонент экосистемы 52
- •5. Развитие и эволюция экосистем 83
- •6. Биосфера и ее эволюция 91
- •7. Электромагнитные поля и природные системы 101
- •Предисловие
- •Предмет экологии
- •Предмет экологии и его место в системе других дисциплин
- •Актуальность изучения экологии
- •Предмет экологии
- •Генезис экологической мысли
- •Объекты изучения экологии
- •Системность в экологии
- •Классификация в экологии
- •Задачи экологии
- •Экология и охрана природы, экология как научная база природопользования
- •Необходимость и особенности экологического образования
- •Роль и место экологического образования в системе подготовки радиофизиков
- •Основные экологические определения и понятия
- •Понятие об экосистемах и их место в организации биосферы
- •Концепция экосистемы
- •Определение экосистемы
- •Краткая история термина «экосистема»
- •Гомеостаз и открытость экосистем
- •Структура биогеоценоза и экосистемы
- •Структура водной и наземной экосистем
- •Кибернетическая природа и стабильность экосистем
- •Энергия в экосистемах и продуктивность экосистем
- •Поток энергии в экосистемах и жизнь как термодинамический процесс
- •Универсальная модель потока энергии
- •Энергетические характеристики биосферы
- •Концепция энергетической субсидии
- •Использование первичной продукции человеком
- •Пищевые цепи, пищевые сети и трофические уровни
- •Концентрация токсичных соединений при продвижении по пищевым цепям
- •Качество энергии
- •Метаболизм и размеры особей
- •Трофическая структура и экологические пирамиды
- •Трофическая структура экосистемы
- •Теория сложности. Закон уменьшения отдачи и концепция поддерживающей ёмкости среды
- •Энергетическая классификация экосистем
- •Круговорот веществ в биосфере. БиОгеохИмиЧеские циклы
- •Круговорот веществ в биосфере
- •Экологические факторы и понятие об экологической нише
- •Понятие экологического фактора
- •Понятие экологического фактора и их классификация
- •Пространство экологических факторов и функция отклика организмов на совокупность экологических факторов
- •Закон лимитирующего фактора
- •Некоторые основные абиотические факторы
- •Биотические факторы
- •Понятие об экологической нише и жизненной форме
- •Понятие экологической ниши
- •Адаптация живых организмов к экологическим факторам
- •Популяция как компонент экосистемы
- •Популяция, ее структура и динамика
- •Понятие популяции в экологии
- •Плотность и численность популяций
- •Возрастной состав популяции
- •Пространственная структура популяции
- •Закономерности динамики популяций. Описание популяций на уровне полного внуприпопуляционного агрегирования
- •Биоценоз экосистемы
- •Динамика биоценоза как результат межвидовых взаимодействий
- •Видовое разнообразие стационарных биоценозов
- •Динамика популяций в биоценозах
- •Классификация биотических взаимодействий
- •Аменсализм (-, 0)
- •Конкуренция в широком смысле или интерференция (-, -)
- •Понятие экологической ниши и уравнения конкуренции
- •Управление численностью видов в экосистемах
- •Развитие и эволюция экосистем
- •Стратегия развития экосистемы
- •Экологическая сукцессия
- •Тенденции изменения основных характеристик экосистем
- •Концепция климакса
- •Основные экологические законы
- •Биосфера и ее эволюция
- •Биосфера Земли
- •Общие свойства биосферы
- •Состав и функционирование биосферы
- •Эволюция биосферы
- •Природная среда и природные ресурсы
- •Электромагнитные поля и природные системы
- •Электромагнитные поля как один из абиотических и антропогенных экологических факторов
- •Естественные и искусственные источники электромагнитных полей в средах обитания организмов
- •Электрическое поле Земли
- •Магнитное поле Земли
- •Атмосферики
- •Радиоизлучения Солнца и галактик
- •Эмп промышленных источников
- •«Радиофон»
- •Компьютерное электромагнитное загрязнение
- •Действие электромагнитного излучения на вещество и ткани живых организмов
- •Свойства тканей в постоянных полях
- •Дисперсия свойств тканей в переменных полях
- •Поглощение энергии эмп в тканях и преобразование ее в тепловую
-
Энергия в экосистемах и продуктивность экосистем
-
Поток энергии в экосистемах и жизнь как термодинамический процесс
Жизнь есть особая форма существования и движения материи, высшая по отношению к физической и химической формам. Все разнообразие проявлений жизни сопровождается превращениями энергии, хотя энергия при этом не создается и не уничтожается. С точки зрения процессов преобразования энергии природная экосистема может рассматриваться как любая физическая система, для которой должен выполняться первый закон термодинамики, или закон сохранения энергии, гласящий, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново. Энергия, получаемая в виде света поверхностью Земли, уравновешивается энергией, излучаемой с поверхности Земли в форме невидимого теплового излучения.
Сущность жизни состоит в непрерывной последовательности таких изменений, как рост, самовоспроизведение и синтез сложных химических соединений. Без переноса энергии, сопровождающего все эти изменения, не было бы ни жизни, ни экологических систем.
Непрерывный поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. Создаваемые таким образом (например, при фотосинтезе) химические вещества последовательно переходят от одних организмов к другим: от растений к растительноядным животным, от них – к плотоядным животным первого порядка, затем второго порядка и т.д. Этот переход рассматривается как последовательный упорядоченный поток веществ и энергии.
Если температура того или иного живого тела выше температуры окружающей среды, тело будет отдавать тепло до тех пор, пока его температура не сравняется с температурой окружающей среды. В конечном итоге энергия любого живого тела может быть рассеяна в тепловой форме, после чего наступает состояние термодинамического равновесия, и дальнейшие энергетические процессы оказываются невозможными. О такой системе "тело-среда" говорят, что она находится в состоянии максимальной энтропии.
Энтропия – мера количества связанной энергии, которая становится недоступной для использования. Этот термин также используется как мера изменения упорядоченности. Понятие энтропии служит основой для формулировки второго закона термодинамики или закона энтропии: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную (деградирует), т.е. энергетические процессы идут в сторону возрастания энтропии.
Отличительной особенностью живых организмов является способность выполнять работу против уравновешивания с окружающей средой за счет образования сложно организованных упорядоченных молекулярных структур. Физики давно были обеспокоены тем фактом, что сохранение функциональной упорядоченности живых существ как бы опровергают второй закон термодинамики. Илья Пригожин, получивший Нобелевскую премию за работы по неравновесной термодинамике (1962 год), разрешил это кажущееся противоречие, показав, что способность к самоорганизации и созданию новых структур может встречаться в системах, далеких от равновесия и обладающих хорошо развитыми диссипативными структурами, откачивающими неупорядоченность. Дыхание высокоупорядоченной биомассы можно рассматривать как диссипативную структуру экосистемы.
Таким образом, важнейшая термодинамическая характеристика организмов, экосистем и биосферы в целом – способность создавать и поддерживать высокую степень внутренней упорядоченности, т.е. состояние с низкой энтропией. Процессы в экосистемах идут по пути постоянного и эффективного рассеяния легко используемой энергии (например, энергии света или пищи) и превращения ее в энергию, используемую с трудом (например, в тепловую). Упорядоченность экосистемы, т.е. сложная структура биомассы, поддерживается за счет дыхания всего сообщества, которое постоянно "откачивает из сообщества неупорядоченность". Таким образом, экосистемы и организмы представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая этим энтропию внутри себя, но увеличивая энтропию вовне в согласии с законами термодинамики.
Экология, по сути дела, изучает связь между светом и экосистемами и способы превращения энергии внутри системы, поток энергии в экосистеме. Особое внимание экологов привлекают вопросы преобразования энергии горючего, атомной энергии и других форм концентрированной энергии в индустриализованном обществе.
Для описания "поведения" энергии в экосистемах подходит понятие "поток энергии", поскольку в отличие от циклического движения веществ превращения энергии идут в одном направлении. Источником энергии служит Солнце. Попав на Землю, лучистая энергия Солнца стремится превратиться в тепловую. Лишь очень небольшая часть световой энергии, поглощенной зелеными растениями, превращается в потенциальную энергию пищи, большая же ее часть (99 %) превращается в тепло, покидающее затем и растение, и экосистему, и биосферу. Весь остальной живой мир получает необходимую потенциальную химическую энергию из органических веществ, созданных фотосинтезирующими растениями или хемосинтезирующими микроорганизмами. Животные поглощают химическую потенциальную энергию пищи и большую ее часть переводят в тепло, а меньшую вновь переводят в химическую потенциальную энергию заново синтезируемой протоплазмы. На каждом этапе передачи энергии от одного организма к другому значительная ее часть рассеивается в виде тепла.