
- •Бесконечно большая функция
- •Бесконечно малые функции
- •Теоремы о пределах
- •Признаки существования предела
- •Непрерывность функции в точке
- •Точки разрыва функции и их классификация
- •Определение производной; ее механический и геометрический смысл.
- •Связь между непрерывностью и дифференцируемостью функции
- •Замечания:
- •Производная суммы, разности, произведения и частного функций
- •Производные основных элементарных функций
- •Производная сложной и обратной функций
- •Понятие дифференциала функции
- •Геометрический смысл дифференциала функции
- •Основные теоремы о дифференциалах
- •Некоторые теоремы о дифференцируемых функциях
- •Правила Лопиталя
- •Раскрытие неопределенностей различных видов
- •Возрастание и убывание функций
- •Максимум и минимум функций
- •Наибольшее и наименьшее значения функции на отрезке
- •Выпуклость графика функции. Точки перегиба
- •Асимптоты графика функции
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла
- •Метод непосредственного интегрирования
- •30.2. Метод интегрирования подстановкой (заменой переменной)
- •30.3. Метод интегрирования по частям
- •31.2. Интегрирование простейших рациональных дробей
- •31. 3. Интегрирование рациональных дробей
- •Универсальная тригонометрическая подстановка
- •Квадратичные иррациональности
- •33.2. Дробно-линейная подстановка
- •33.3. Тригонометрическая подстановка
- •33.4. Интегралы типа
- •33.5. Интегрирование дифференциального бинома
- •§ 35. Определенный интеграл как предел интегральной суммы
- •Геометрический и физический смысл определенного интеграла
- •Формула Ньютона-Лейбница
- •§ 38. Основные свойства определенного интеграла
- •39.1. Формула Ньютона-Лейбница
- •39.2. Интегрирование подстановкой (заменой переменной)
- •39.3. Интегрирование по частям
- •39.4. Интегрирование четных и нечетных функций в симметричных пределах
- •§ 40. Несобственные интегралы
- •40.1. Интеграл с бесконечным промежутком интегрирования (несобственный интеграл I рода)
- •40.2. Интеграл от разрывной функции (несобственный интеграл II рода)
- •§ 41. Геометрические и физические приложения определенного интеграла Додати до моєї бази знань Математика
- •41.1. Схемы применения определенного интеграла
- •41.2. Вычисление площадей плоских фигур
- •41.3. Вычисление длины дуги плоской кривой
- •41.4. Вычисление объема тела
- •41.5. Вычисление площади поверхности вращения
- •41.6. Механические приложения определенного интеграла
Максимум и минимум функций
Точка х0 называется точкой максимума функции у=ƒ(х), если существует такая d -окрестность точки х0, что для всех х≠х0 из этой окрестности выполняется неравенство ƒ(х)<ƒ(х0).
Аналогично
определяется точка минимума функции:
x0 — точка минимума функции, если $d >0
" х: 0<|x-x0|<d Þ ƒ(х)>ƒ(х0). На рисунке
146 х1 — точка минимума, а точка х2 — точка
максимума функции у=ƒ(х).
Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум (минимум) функции называется экстремумом функции.
Понятие экстремума всегда связано с определенной окрестностью точки из области определения функции. Поэтому функция может иметь экстремум лишь во внутренних точках области определения. Рассмотрим условия существования экстремума функции.
Теорема 8 (необходимое условие экстремума). Если дифференцируемая функция у=ƒ(х) имеет экстремум в точке х0, то ее производная в этой точке равна нулю: ƒ'(х0)=0.
Пусть, для определенности, x0 — точка максимума. Значит, в окрестности точки х0 выполняется неравенство ƒ(х0)>ƒ(х0+∆х). Но тогда
если ∆х>0, и ∆у/∆х>0, если ∆х<0.
По условию теоремы производная
существует. Переходя к пределу, при ∆х→0, получим ƒ'(x0)≥0, если ∆х<0, и f'(х0)≤0, если ∆х>0. Поэтому ƒ'(х0)=0. Аналогично доказывается утверждение теоремы 25.8, если х0 — точка минимума функции ƒ(х).
Геометрически
равенство ƒ'(х0)=0 означает, что в точке
экстремума дифференцируемой функции
у=ƒ(х) касательная к ее графику параллельна
оси Ох (см. рис. 147).
Отметим, что обратная теорема неверна, т. е. если ƒ'(х0)=0, то это не значит, что х0-точка экстремума. Например, для функции у=х3 ее производная у'=3х2 равна нулю при х=0, но х=0 не точка экстремума (см. рис. 148).
Существуют функции, которые в точках экстремума не имеют производной. Например, непрерывная функция у=׀ х׀ в точке х=0 производной не имеет, но точка х=0 — точка минимума (см. рис. 149).
Таким образом, непрерывная функция может иметь экстремум лишь в точках, где производная функции равна нулю или не существует. Такие точки называются критическими.
Теорема 9(достаточное условие экстремума). Если непрерывная функция у=ƒ(х) дифференцируема в некоторой d -окрестности критической точки х0 и при переходе через нее (слева направо) производная ƒ'(х) меняет знак с плюса на минус, то х0 есть точка максимума; с минуса на плюс, то х0 — точка минимума.
Рассмотрим d -окрестность точки х0. Пусть выполняются условия: ƒ'(х)>0 " xє(х0-d ;х0) и ƒ'(х)<0 " xє(х0;х0+d ). Тогда функция ƒ(х) возрастает на интервале (х0-δ; х0), а на интервале (х0; х0+d ) она убывает. Отсюда следует, что значение ƒ (х) в точке x0 является наибольшим на интервале (х0-δ;х0+δ), т. е. ƒ(х)<ƒ(х0) для всех хє(х0-d ;x0)U(x0;x0+d ). Это и означает, что х0 — точка максимума функции.
Графическая интерпретация доказательства теоремы 9 представлена на рисунке 150.
Аналогично теорема 9 доказывается для случая, когда ƒ'(х)<0 " x є(х0-d ;х0) и ƒ'(х)>0 " xє(х0;х0+d ).
Исследовать функцию на экстремум означает найти все ее экстремумы. Из теорем 8 и 9 вытекает следующее правило исследования функции на экстремум:
1) найти критические точки функции у=ƒ(х);
2) выбрать из них лишь те, которые являются внутренними точками области определения функции;
3) исследовать знак производной ƒ'(х) слева и справа от каждой из выбранных критических точек;
4) в соответствии с теоремой 9 (достаточное условие экстремума) выписать точки экстремума (если они есть) и вычислить значения функции в них.
Теорема 10. Если в точке х0 первая производная функции ƒ(х) равна нулю (ƒ'(х0)=0), а вторая производная в точке х0 существует и отлична от нуля (ƒ"(х0)¹ 0), то при ƒ"(х0)<0 в точке х0 функция имеет максимум и минимум — при ƒ"(х0)>0.
Пусть для определенности ƒ"(х0)>0. Так как
То
в достаточно малой окрестности точки
х0. Если ∆х<0,
то ƒ'(х0+∆х)<0; если ∆х>0, то ƒ'(х0+∆х)>0.
Таким образом, при переходе через точку x0 первая производная меняет знак с минуса на плюс. Следовательно, по теореме 9, х0 есть точка минимума.
Аналогично доказывается, что если ƒ"(х0)<0, то в точке х0 функция имеет максимум.