
- •Бесконечно большая функция
- •Бесконечно малые функции
- •Теоремы о пределах
- •Признаки существования предела
- •Непрерывность функции в точке
- •Точки разрыва функции и их классификация
- •Определение производной; ее механический и геометрический смысл.
- •Связь между непрерывностью и дифференцируемостью функции
- •Замечания:
- •Производная суммы, разности, произведения и частного функций
- •Производные основных элементарных функций
- •Производная сложной и обратной функций
- •Понятие дифференциала функции
- •Геометрический смысл дифференциала функции
- •Основные теоремы о дифференциалах
- •Некоторые теоремы о дифференцируемых функциях
- •Правила Лопиталя
- •Раскрытие неопределенностей различных видов
- •Возрастание и убывание функций
- •Максимум и минимум функций
- •Наибольшее и наименьшее значения функции на отрезке
- •Выпуклость графика функции. Точки перегиба
- •Асимптоты графика функции
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла
- •Метод непосредственного интегрирования
- •30.2. Метод интегрирования подстановкой (заменой переменной)
- •30.3. Метод интегрирования по частям
- •31.2. Интегрирование простейших рациональных дробей
- •31. 3. Интегрирование рациональных дробей
- •Универсальная тригонометрическая подстановка
- •Квадратичные иррациональности
- •33.2. Дробно-линейная подстановка
- •33.3. Тригонометрическая подстановка
- •33.4. Интегралы типа
- •33.5. Интегрирование дифференциального бинома
- •§ 35. Определенный интеграл как предел интегральной суммы
- •Геометрический и физический смысл определенного интеграла
- •Формула Ньютона-Лейбница
- •§ 38. Основные свойства определенного интеграла
- •39.1. Формула Ньютона-Лейбница
- •39.2. Интегрирование подстановкой (заменой переменной)
- •39.3. Интегрирование по частям
- •39.4. Интегрирование четных и нечетных функций в симметричных пределах
- •§ 40. Несобственные интегралы
- •40.1. Интеграл с бесконечным промежутком интегрирования (несобственный интеграл I рода)
- •40.2. Интеграл от разрывной функции (несобственный интеграл II рода)
- •§ 41. Геометрические и физические приложения определенного интеграла Додати до моєї бази знань Математика
- •41.1. Схемы применения определенного интеграла
- •41.2. Вычисление площадей плоских фигур
- •41.3. Вычисление длины дуги плоской кривой
- •41.4. Вычисление объема тела
- •41.5. Вычисление площади поверхности вращения
- •41.6. Механические приложения определенного интеграла
Некоторые теоремы о дифференцируемых функциях
Рассмотрим ряд теорем, имеющих большое теоретическое и прикладное значение.
Теорема 1 (Ролль). Если функция ƒ(х) непрерывна на отрезке [а;b], дифференцируема на интервале (а; b) и на концах отрезка принимает одинаковые значения ƒ(а)=ƒ(b), то найдется хотя бы одна точка сє(а;b), в которой производная ƒ'(х) обращается в нуль, т. е. ƒ'(с)=0.
▼ Так как функция ƒ(х) непрерывна на отрезке [а;b], то она достигает на этом отрезке своего наибольшего и наименьшего значений, соответственно, М и m. Если М=m, то функция ƒ(х) постоянна на [a;b] и, следовательно, ее производная ƒ'(х)=0 в любой точке отрезка [a;b].
Если М¹ m, то функция достигает хотя бы одно из значений М или m во внутренней точке с интервала (a;b), так как ƒ(a)=ƒ(b).
Пусть, например, функция принимает значение М в точке х=с є(a;b), т. е. ƒ(с)=М. Тогда для всех хє(a;b) выполняется соотношение
ƒ(с)≥ƒ(х). (25.1)
Найдем производную ƒ'(х) в точке х=с:
В силу условия (25.1) верно неравенство ƒ(с+∆х)—ƒ(с)≤0. Если ∆х>0 (т. е. ∆х→0 справа от точки х=с), то
и
поэтому ƒ'(с)≤0.
Если ∆х<0, то
и ƒ'(с)≥0.
Таким образом, ƒ'(с)=0
В случае, когда ƒ(с)=m, доказательство аналогичное
Геометрически теорема Ролля означает, что на графике функции у=ƒ(х) найдется точка, в которой касательная к графику параллельна оси Ох (см. рис. 139 и 140). На рисунке 141 таких точек две.
Теорема 2 (Коши). Если функции ƒ(х) и φ(x) непрерывны на отрезке [a;b], дифференцируемы на интервале (α;b), причем φ'(х)¹ 0 для хє(а;b), то найдется хотя бы одна точка с є(a;b) такая, что выполняется равенство
Отметим, что φ(b)—φ(а)≠0, так как в противном случае по теореме Ролля нашлась бы точка с, такая, что φ'(с)=0, чего не может быть по условию теоремы. Рассмотрим вспомогательную функцию
Она удовлетворяет всем условиям теоремы Ролля: непрерывна на отрезке [a;b] и дифференцируема на интервале (α;b), так как является линейной комбинацией функций ƒ(х) и φ(х) на концах отрезка она принимает одинаковые значения F(a)=F(b)=0.
На основании теоремы Ролля найдется точка х=сє(a;b) такая, что F'(c)=0. Но
,
следовательно,
Отсюда следует
Теорема 3 (Лагранж). Если функция ƒ(х) непрерывна на отрезке [а;b], дифференцируема на интервале (α;b), то найдется хотя бы одна точка с є(a;b) такая, что выполняется равенство
ƒ(b)-ƒ(a)=ƒ'(с)(b-a). (25.2)
Решение: Теорему Лагранжа можно рассматривать как частный случай теоремы Коши. Действительно, положив φ(х)=х, находим φ(b)-φ(a)=b-a, φ'(х)=1, φ'(с)=1.
Подставляя эти значения в формулу
получаем
или ƒ(b)-ƒ(a)=ƒ'(с)(b-a) .
Полученную формулу называют формулой Лагранжа или формулой о конечном приращении: приращение дифференцируемой функции на отрезке [a;b] равно приращению аргумента, умноженному на значение производной функции в некоторой внутренней точке этого отрезка
Теорема Лагранжа имеет простой геометрический смысл. Запишем формулу (25.2) в виде
,
где α<с<b. Отношение есть угловой коэффициент секущей АВ, а величина ƒ'(с) — угловой коэффициент касательной к кривой в точке с абсциссой х=с.
Следовательно, геометрический смысл теоремы Лагранжа таков: на графике функции y=f(x) найдется точка С(с;ƒ(с)) (см. рис. 142), в которой касательная к графику функции параллельна секущей АВ.
Следствие 1. Если производная функции равна нулю на некотором промежутке, то функция постоянна на этом промежутке.
Пусть ƒ'(х)=0 для " xє(α;b). Возьмем произвольные x1 и х2 из (а;b) и пусть x1<х2. Тогда по теореме Лагранжа $ сє(х1;х2) такая, что ƒ(х2)-f(x1)=ƒ'(с)(х2-х1). Но по условию ƒ'(х)=0, стало быть, ƒ'(с)=0, где х1<с<х2. Поэтому имеем ƒ(х2)-ƒ(х1)=0, т. е. ƒ(х2)=f(x1). А так как x1 и х2 — произвольные точки из интервала (α;b),то " x є (а;b) имеем ƒ(х)≈с.
Следствие 2. Если две функции имеют равные производные на некотором промежутке, то они отличаются друг от друга на постоянное слагаемое.
Пусть f1' (x)=f2'(x) при хє(α;b). Тогда (f1(x)-f2(x))'=f1'(x)-f2'(x)=0. Следовательно, согласно следствию 25.1, функция f1(х)-f2(x) есть постоянная, т. е. f1(x)-f2(x)=C для " xє(α;b).