
- •Бесконечно большая функция
- •Бесконечно малые функции
- •Теоремы о пределах
- •Признаки существования предела
- •Непрерывность функции в точке
- •Точки разрыва функции и их классификация
- •Определение производной; ее механический и геометрический смысл.
- •Связь между непрерывностью и дифференцируемостью функции
- •Замечания:
- •Производная суммы, разности, произведения и частного функций
- •Производные основных элементарных функций
- •Производная сложной и обратной функций
- •Понятие дифференциала функции
- •Геометрический смысл дифференциала функции
- •Основные теоремы о дифференциалах
- •Некоторые теоремы о дифференцируемых функциях
- •Правила Лопиталя
- •Раскрытие неопределенностей различных видов
- •Возрастание и убывание функций
- •Максимум и минимум функций
- •Наибольшее и наименьшее значения функции на отрезке
- •Выпуклость графика функции. Точки перегиба
- •Асимптоты графика функции
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла
- •Метод непосредственного интегрирования
- •30.2. Метод интегрирования подстановкой (заменой переменной)
- •30.3. Метод интегрирования по частям
- •31.2. Интегрирование простейших рациональных дробей
- •31. 3. Интегрирование рациональных дробей
- •Универсальная тригонометрическая подстановка
- •Квадратичные иррациональности
- •33.2. Дробно-линейная подстановка
- •33.3. Тригонометрическая подстановка
- •33.4. Интегралы типа
- •33.5. Интегрирование дифференциального бинома
- •§ 35. Определенный интеграл как предел интегральной суммы
- •Геометрический и физический смысл определенного интеграла
- •Формула Ньютона-Лейбница
- •§ 38. Основные свойства определенного интеграла
- •39.1. Формула Ньютона-Лейбница
- •39.2. Интегрирование подстановкой (заменой переменной)
- •39.3. Интегрирование по частям
- •39.4. Интегрирование четных и нечетных функций в симметричных пределах
- •§ 40. Несобственные интегралы
- •40.1. Интеграл с бесконечным промежутком интегрирования (несобственный интеграл I рода)
- •40.2. Интеграл от разрывной функции (несобственный интеграл II рода)
- •§ 41. Геометрические и физические приложения определенного интеграла Додати до моєї бази знань Математика
- •41.1. Схемы применения определенного интеграла
- •41.2. Вычисление площадей плоских фигур
- •41.3. Вычисление длины дуги плоской кривой
- •41.4. Вычисление объема тела
- •41.5. Вычисление площади поверхности вращения
- •41.6. Механические приложения определенного интеграла
Понятие дифференциала функции
Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.
Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/D х=ƒ'(х)+α, где α→0 при ∆х→0, или ∆у=ƒ'(х)•∆х+α•∆х.
Таким образом, приращение функции ∆у
представляет собой сумму двух слагаемых
ƒ'(х)•∆х и а•∆х, являющихся бесконечно
малыми при ∆x→0. При этом первое слагаемое
есть бесконечно малая функция одного
порядка с ∆х, так как
а
второе слагаемое есть бесконечно малая
функция более высокого порядка, чем ∆х:
Поэтому первое слагаемое ƒ'(х)· ∆х называют главной частью приращения функции ∆у.
Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):
dy=ƒ'(х)•∆х. (24.1)
Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.
Так как у'=х'=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.
Поэтому формулу (24.1) можно записать так:
dy=ƒ'(х)dх, (24.2)
иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.
Из формулы (24.2) следует равенство dy/dx=ƒ'(х). Теперь обозначение
производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.
Геометрический смысл дифференциала функции
Выясним геометрический смысл дифференциала.
Для
этого проведем к графику функции у=ƒ(х)
в точке М(х; у) касательную МТ и
рассмотрим ординату этой касательной
для точки х+∆х (см. рис. 138). На рисунке
½ АМ½ =∆х, |AM1|=∆у. Из прямоугольного
треугольника МАВ имеем:
Но, согласно геометрическому смыслу производной, tga=ƒ'(х). Поэтому АВ=ƒ'(х)•∆х.
Сравнивая полученный результат с формулой (24.1), получаем dy=АВ, т. е. дифференциал функции у=ƒ(х) в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получит приращение ∆х.
В этом и состоит геометрический смысл дифференциала.
Основные теоремы о дифференциалах
Основные теоремы о дифференциалах легко получить, используя связь дифференциала и производной функции (dy=f'(x)dx) и соответствующие теоремы о производных.
Например, так как производная функции у=с равна нулю, то дифференциал постоянной величины равен нулю: dy=с'dx=0•dx=0.
Теорема 1. Дифференциал суммы, произведения и частного двух дифференцируемых функций определяются следующими формулами:
Докажем, например, вторую формулу. По определению дифференциала имеем:
d(uv)=(uv)'dx=(uv'+vu')dx=vu'dx+uv'dx=udv+vdu
Теорема 2. Дифференциал сложной функции равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента.
Пусть у=ƒ(u) и u=φ(х) две дифференцируемые функции, образующие сложную функцию у=ƒ(φ(х)). По теореме о производной сложной функции можно написать
у'х=у'u•u'x.
Умножив обе части этого равенства на dx, поучаем у'хdx=у'u•u'хdx. Но у'хdx=dy и u'хdx=du. Следовательно, последнее равенство можно переписать так:
dy=у'udu.
Сравнивая формулы dy=у'х•dx и dy=у'u•du, видим, что первый дифференциал функции у=ƒ(х) определяется одной и той же формулой независимо от того, является ли ее аргумент независимой переменной или является функцией другого аргумента.
Это свойство дифференциала называют инвариантностью (неизменностью) формы первого дифференциала.
Формула dy=у'х•dx по внешнему виду совпадает с формулой dy=у'u•du, но между ними есть принципиальное отличие: в первой формуле х — независимая переменная, следовательно, dx=∆х, во второй формуле и есть функция от х, поэтому, вообще говоря, du≠∆u.
С помощью определения дифференциала и основных теорем о дифференциалах легко преобразовать таблицу производных в таблицу дифференциалов.