
- •Бесконечно большая функция
- •Бесконечно малые функции
- •Теоремы о пределах
- •Признаки существования предела
- •Непрерывность функции в точке
- •Точки разрыва функции и их классификация
- •Определение производной; ее механический и геометрический смысл.
- •Связь между непрерывностью и дифференцируемостью функции
- •Замечания:
- •Производная суммы, разности, произведения и частного функций
- •Производные основных элементарных функций
- •Производная сложной и обратной функций
- •Понятие дифференциала функции
- •Геометрический смысл дифференциала функции
- •Основные теоремы о дифференциалах
- •Некоторые теоремы о дифференцируемых функциях
- •Правила Лопиталя
- •Раскрытие неопределенностей различных видов
- •Возрастание и убывание функций
- •Максимум и минимум функций
- •Наибольшее и наименьшее значения функции на отрезке
- •Выпуклость графика функции. Точки перегиба
- •Асимптоты графика функции
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла
- •Метод непосредственного интегрирования
- •30.2. Метод интегрирования подстановкой (заменой переменной)
- •30.3. Метод интегрирования по частям
- •31.2. Интегрирование простейших рациональных дробей
- •31. 3. Интегрирование рациональных дробей
- •Универсальная тригонометрическая подстановка
- •Квадратичные иррациональности
- •33.2. Дробно-линейная подстановка
- •33.3. Тригонометрическая подстановка
- •33.4. Интегралы типа
- •33.5. Интегрирование дифференциального бинома
- •§ 35. Определенный интеграл как предел интегральной суммы
- •Геометрический и физический смысл определенного интеграла
- •Формула Ньютона-Лейбница
- •§ 38. Основные свойства определенного интеграла
- •39.1. Формула Ньютона-Лейбница
- •39.2. Интегрирование подстановкой (заменой переменной)
- •39.3. Интегрирование по частям
- •39.4. Интегрирование четных и нечетных функций в симметричных пределах
- •§ 40. Несобственные интегралы
- •40.1. Интеграл с бесконечным промежутком интегрирования (несобственный интеграл I рода)
- •40.2. Интеграл от разрывной функции (несобственный интеграл II рода)
- •§ 41. Геометрические и физические приложения определенного интеграла Додати до моєї бази знань Математика
- •41.1. Схемы применения определенного интеграла
- •41.2. Вычисление площадей плоских фигур
- •41.3. Вычисление длины дуги плоской кривой
- •41.4. Вычисление объема тела
- •41.5. Вычисление площади поверхности вращения
- •41.6. Механические приложения определенного интеграла
Геометрический и физический смысл определенного интеграла
Площадь криволинейной трапеции
Пусть на отрезке [а; b] задана непрерывная функция у = ƒ(х) ≥ 0. Фигура, ограниченная сверху графиком функции у = ƒ(х), снизу — осью Ох, сбоку — прямыми х = а и х = b, называется криволинейной трапецией. Найдем площадь этой трапеции.
Для этого отрезок [а; b] точками а=х0, х1, ..., b=хn (х0<x1<...<xn) paзобьем на n частичных отрезков [хо;х1], [х1;х2],...,[хn-1;хn]. (см. рис. 168). В каждом частичном отрезке [xi-1;xi] (i=1,2,..., n) возьмем произвольную точку ci и вычислим значение функции в ней, т. е. ƒ(ci).
Умножим значением функции ƒ(ci) на длину ∆xi=xi-xi-1 соответствующего частичного отрезка. Произведение ƒ(ci) • ∆xi равно площади прямоугольника с основанием ∆xi и высотой ƒ(ci). Сумма всех таких произведений
равна площади ступенчатой фигуры и приближенно равна площади S криволинейной трапеции:
С уменьшением всех величин Δхi точность приближения криволинейной трапеции ступенчатой фигурой и точность полученной формулы увеличиваются. Поэтому за точное значение площади S криволинейной трапеции принимается предел S, к которому стремится площадь ступенчатой фигуры Sn, когда n неограниченно возрастает так, что
λ = max∆xi →0:
Итак, определенный интеграл от неотрицательной функции численно равен площади криволинейной трапеции.
В этом состоит геометрический смысл определенного интеграла.
Работа переменной силы
Пусть материальная точка М перемещается под действием силы F, направленной вдоль оси Ох и имеющей переменную величину F = F(x), где х—абсцисса движущейся точки М.
Найдем работу А силы F по перемещению точки М вдоль оси Ох из точки х = а в точку
х = b (а < b). Для этого отрезок [а; b] точками а = х0, х1, ..., b = хn (х0 < x1 < ... < хn) разобьем на n частичных отрезков [х0; x1], [x1; x2],..., [xn-1; xn]. Сила, действующая на отрезке [xi-1; xi], меняется от точки к точке. Но если длина отрезка Δхi = хi-xi-1 достаточно мала, то сила F на этом отрезке изменяется незначительно. Ее можно приближенно считать постоянной и равной значению функции F = F(x) в произвольно выбранной точке х = ci Î [xi-1; xi]. Поэтому работа, совершенная этой силой на отрезке [xi-1;xi], равна произведению F(ci)•Δхi (Как работа постоянной силы F(ci) на участке [xi-1; xi].)
Приближенное значение работы А силы F на всем отрезке [а; b] есть
Это приближенное равенство тем точнее, чем меньше длина Δхi Поэтому за точное значение работы А принимается предел суммы (36.1) при условии, что наибольшая длина λ частичных отрезков стремится к нулю:
Итак, работа переменной силы F , величина которой есть непрерывная функция F = F(x), действующей на отрезке [а; b], равна определенному интегралу от величины F(x) силы, взятому по отрезку [а; b].
В этом состоит физический смысл определенного интеграла.
Аналогично можно показать, что путь S, пройденный точкой за промежуток времени от t=а до t=b, равен определенному интегралу от скорости v(t):
масса m неоднородного стержня на
отрезке [a,b] равна определенному
интегралу от плотности g(х):