![](/user_photo/2706_HbeT2.jpg)
- •Бесконечно большая функция
- •Бесконечно малые функции
- •Теоремы о пределах
- •Признаки существования предела
- •Непрерывность функции в точке
- •Точки разрыва функции и их классификация
- •Определение производной; ее механический и геометрический смысл.
- •Связь между непрерывностью и дифференцируемостью функции
- •Замечания:
- •Производная суммы, разности, произведения и частного функций
- •Производные основных элементарных функций
- •Производная сложной и обратной функций
- •Понятие дифференциала функции
- •Геометрический смысл дифференциала функции
- •Основные теоремы о дифференциалах
- •Некоторые теоремы о дифференцируемых функциях
- •Правила Лопиталя
- •Раскрытие неопределенностей различных видов
- •Возрастание и убывание функций
- •Максимум и минимум функций
- •Наибольшее и наименьшее значения функции на отрезке
- •Выпуклость графика функции. Точки перегиба
- •Асимптоты графика функции
- •Понятие неопределенного интеграла
- •Свойства неопределенного интеграла
- •Метод непосредственного интегрирования
- •30.2. Метод интегрирования подстановкой (заменой переменной)
- •30.3. Метод интегрирования по частям
- •31.2. Интегрирование простейших рациональных дробей
- •31. 3. Интегрирование рациональных дробей
- •Универсальная тригонометрическая подстановка
- •Квадратичные иррациональности
- •33.2. Дробно-линейная подстановка
- •33.3. Тригонометрическая подстановка
- •33.4. Интегралы типа
- •33.5. Интегрирование дифференциального бинома
- •§ 35. Определенный интеграл как предел интегральной суммы
- •Геометрический и физический смысл определенного интеграла
- •Формула Ньютона-Лейбница
- •§ 38. Основные свойства определенного интеграла
- •39.1. Формула Ньютона-Лейбница
- •39.2. Интегрирование подстановкой (заменой переменной)
- •39.3. Интегрирование по частям
- •39.4. Интегрирование четных и нечетных функций в симметричных пределах
- •§ 40. Несобственные интегралы
- •40.1. Интеграл с бесконечным промежутком интегрирования (несобственный интеграл I рода)
- •40.2. Интеграл от разрывной функции (несобственный интеграл II рода)
- •§ 41. Геометрические и физические приложения определенного интеграла Додати до моєї бази знань Математика
- •41.1. Схемы применения определенного интеграла
- •41.2. Вычисление площадей плоских фигур
- •41.3. Вычисление длины дуги плоской кривой
- •41.4. Вычисление объема тела
- •41.5. Вычисление площади поверхности вращения
- •41.6. Механические приложения определенного интеграла
ПРЕДЕЛ ФУНКЦИИ
Число А называется пределом функции в точке хо (или при х→хо), если для любого положительного ε найдется такое положительное число δ, что для все х¹хо, удовлетворяющих неравенству |х-хо|<δ, выполняется неравенство |ƒ(х)-А|<ε.
Бесконечно большая функция
Функция у=ƒ(х) называется бесконечно большой при х→х0, если для любого числа М>0 существует число δ=δ(М)>0, что для всех х, удовлетворяющих неравенству 0<|х-хо|<δ, выполняется неравенство |ƒ(х)|>М.
Бесконечно малые функции
Функция у=f(х) назівается бесконечно малой при х→x0,если
ТЕОРЕМА 1:Алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция.
ТЕОРЕМА 2: Произведение ограниченной функции на бесконечно малую функцию есть функция бесконечно малая.
ТЕОРЕМА 3: Если функция α(х) — бесконечно малая (α¹ 0), то функция 1/α(х) есть бесконечно большая функция и наоборот: если функция ƒ(х)— бесконечно большая, то 1/ƒ(х) — бесконечно малая.
А это означает, что функция 1/α(х) есть бесконечно большая. Аналогично доказывается обратное α(х) утверждение.
Теоремы о пределах
1)Предел суммы (разности) двух функций равен сумме (разности) их пределов:
2) Предел произведения двух функций равен произведению их пределов:
где α(х) и ß(х) — б.м.ф. Следовательно,
Выражение в скобках есть б.м.ф. Поэтому
3) Предел дроби равен пределу числителя, деленному на предел знаменателя, если предел знаменателя не равен нулю:
Второе слагаемое есть б.м.ф. как частное от деления б.м.ф. на функцию, имеющую отличный от нуля предел.
Признаки существования предела
1)Если функция ƒ(х) заключена между двумя функциями φ(х) и g(х), стремящимися к одному и тому же пределу, то она также стремится к этому пределу, т. е. если
▼Из равенств (17.6) вытекает, что для любого ε>0 существуют две окрестности δ1 и δ2 точки хо, в одной из которых выполняется неравенство |φ(х)-А|<ε, т. е.
-ε<φ(х)-А<ε, (17.8)
а в другой |g(х)-А|<ε, т. е.
-ε<g(х)-А<ε. (17.9)
Пусть δ — меньшее из чисел δ1 и δ2. Тогда в δ-окрестности точки x0 выполняются оба неравенства (17.8) и (17.9).Из неравенств (17.7) находим, что
φ(x)-A≤f(x)-A≤g(x)-A (17.10)
С учетом неравенств (17.8) и (17.9) из неравенства (17.10) следуют неравенства -ε<ƒ(х)-А<ε или |ƒ(х)-А|<ε.
Мы доказали, что
" ε>0 $ δ>0 " x: 0<|х-х0|<δ Þ |ƒ(х)-А|<ε,
то есть lim ƒ(х)=А при х –> x0.
2) Если f(x) монотонна и ограничена при х<хо или при х>хо, то существует соответственно ее левый предел или ее правый предел
Непрерывность функции в точке
Пусть функция у=ƒ(х) определена в точке хо и в некоторой окрестности этой точки. Функция y=f(x) называется непрерывной в точке х0, если существует предел функции в этой точке и он равен значению функции в этой точке, т. е.
Равенство (19.1) означает выполнение трех условий:
1) функция ƒ (х) определена в точке x0 и в ее окрестности;
2) функция ƒ(х) имеет предел при х→хо;
3) предел функции в точке хо равен значению функции в этой точке, т. е. выполняется равенство (19.1).
Так как
то равенство (19.1) можно записать в виде
Это означает, что при нахождении предела непрерывной функции ƒ(х) можно перейти к пределу под знаком функции, то есть β функцию ƒ(х) вместо аргумента х подставить его предельное значение хо.
Например,
.
В первом равенстве функция и предел
поменялись местами (см. (19.2)) в силу
непрерывности функции е в степени x .