Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все лекции по физике.doc
Скачиваний:
15
Добавлен:
12.11.2018
Размер:
871.94 Кб
Скачать

Динамика материальной точки Классическая механика. Границы ее применимости

Кинематика дает описание движения тел, не затрагивая вопроса о том, почему тело движется именно так (например, равномерно по окружности, или равномерно-ускоренно по прямой), а не иначе.

Динамика изучает движение тел в связи с теми причинами (взаимодействиями между телами), которые обусловливают тот или иной характер движения.

В основе так называемой классической или ньютоновской механики лежат три закона динамики, сформулированные Ньютоном в 1687 г.

Законы Ньютона (как и все остальные физические законы) возникли в результате обобщения большого количества опытных фактов. Правильность их (хотя и для очень обширного, но все же ограниченного круга явлений) подтверждается согласием с опытом тех следствий, которые из них вытекают.

Ньютоновская механика достигла в течение двух столетий таких огромных успехов, что многие физики XIX столетия были убеждены в ее всемогуществе. Считалось, что объяснить любое физическое явление означает свести его к механическому процессу, подчиняющемуся законам Ньютона. Однако с развитием науки обнаружились новые факты, которые не укладывались в рамки классической механики. Эти факты получили свое объяснение в новых теориях — специальной теории относительности и квантовой механике.

В специальной теории относительности, созданной Эйнштейном в 1905 г., подверглись радикальному пересмотру ньютоновские представления о пространстве и времени. Этот пересмотр привел к созданию «механики больших скоростей» или, как ее называют, релятивистской механики. Новая механика не привела, однако, к полному отрицанию старой ньютоновской механики. Уравнения релятивистской механики в пределе (для скоростей, малых по сравнению со скоростью света) переходят в уравнения классической механики: Таким образом, классическая механика вошла в релятивистскую механику как ее частный случай и сохранила свое прежнее значение для описания движений, происходящих со скоростями, значительно меньшими скорости света.

Аналогично обстоит дело и с соотношением между классической и квантовой механикой, возникшей в 20-х годах нашего века в результате развития физики атома. Уравнения квантовой механики также дают в пределе (для масс больших по сравнению с массами атомов) уравнения классической механики. Следовательно, классическая механика вошла и в квантовую механику в качестве ее предельного случая.

Таким образом, развитие науки не перечеркнуло классическую механику, а лишь показало ее ограниченную применимость. Классическая механика, основывающаяся на законах Ньютона, является механикой тел больших (по сравнению с массой атомов) масс, движущихся с малыми (по сравнению со скоростью света) скоростями.

Первый закон Ньютона. Инерциальные системы отсчета

Первый закон Ньютона формулируется следующим образом: всякое тело находится в состоянии покоя или равномерного и прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Оба названных состояния отличаются тем, что ускорение тела равно нулю. Поэтому формулировке первого закона можно придать следующий вид: скорость любого тела остается постоянной (в частности, равной нулю), пока воздействие на это тело со стороны других тел не вызовет ее изменения.

Следует отметить, что тел, не подвергающихся в той или иной степени воздействию со стороны других тел, в природе не существует. В наблюдаемых на практике случаях покоя или равномерного и прямолинейного движения мы имеем дело с телами, воздействия на которые уравновешивают друг друга. Например, книга, лежащая на столе, испытывает воздействие (притяжение) со стороны Земли, а также воздействие (давление) со стороны стола, причем оба эти воздействия уравновешивают друг друга, в результате чего книга покоится.

Утверждение, содержащееся в первом законе, является отнюдь не очевидным. До Галилея (1564—1642) считали, что воздействие необходимо не для изменения скорости, а для поддержания ее неизменной. Это мнение основывалось на таких известных из повседневной жизни фактах, как необходимость толкать непрерывно тележку, катящуюся по ровной горизонтальной дороге, для того, чтобы ее движение не замедлялось. Теперь мы знаем, что, толкая тележку, мы уравновешиваем воздействие, оказываемое на нее трением. Однако, если этого не сознавать в достаточной степени, легко прийти к выводу, что воздействие обусловливает скорость, а не ее изменение (т. е. ускорение).

Первый закон Ньютона выполняется не во всякой системе отсчета. Мы уже отмечали, что характер движения зависит от выбора системы отсчета. Рассмотрим две системы отсчета, движущиеся друг относительно друга с некоторым ускорением. Если относительно одной из них тело покоится, то относительно другой оно, очевидно, будет двигаться с ускорением. Следовательно, первый закон Ньютона не может выполняться одновременно в обеих системах.

Система отсчета, в которой выполняется первый закон Ньютона, называется инерциальной. Сам закон называют иногда законом инерции. Система отсчета, в которой первый закон Ньютона не выполняется, называется неинерциальной системой отсчета. Инерциальных систем существует бесконечное множество. Любая система отсчета, движущаяся относительно некоторой инерциальной системы прямолинейно и равномерно (т. е. с постоянной скоростью), будет также инерциальной. Подробнее об этом будет сказано в §17.

Опытным путем установлено, что система отсчета, центр которой совмещен с Солнцем, а оси направлены на соответствующим образом выбранные звезды, является инерциальной.

Эта система называется гелиоцентрической системой отсчета (гелиос — по-гречески солнце). Любая система отсчета, движущаяся равномерно и прямолинейно относительно гелиоцентрической системы, будет инерциальной.

Земля движется относительно Солнца и звезд по криволинейной траектории, имеющей форму эллипса. Криволинейное движение всегда происходит с некоторым ускорением. Кроме того, Земля совершает вращение вокруг своей оси. По этим причинам система отсчета, связанная с земной поверхностью, движется с ускорением относительно гелиоцентрической системы отсчета и не является инерциальной. Однако ускорение такой системы настолько мало, что в большом числе случаев ее можно считать практически инерциальной. Но иногда неинерциальность системы отсчета, связанной с Землей, оказывает существенное влияние на характер рассматриваемых относительно нее механических явлений. Некоторые из таких случаев мы рассмотрим впоследствии.