Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Первая часть математики.doc
Скачиваний:
19
Добавлен:
10.11.2018
Размер:
2.41 Mб
Скачать

Вопрос 32.Парабола.

Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.

Для вывода уравнения параболы введем прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус директрисе.

Начало координат расположен посередине между фокусом и директрисой. Пусть M(x;y)-произвольная точка плоскости, r-расстояние от точки M до фокуса F. d-расстояние от M до директрисы. p –расстояние от фокуса до директрисы.

Величину p называют параметром параболы. По определению, точка M будет лежать на параболе, если r=d (7).

Фокус F имеет координаты (;0), поэтому r=|FM|= . Расстояние d выражается равенством d=|MQ|=x+ . Последняя формула верна для x≥0. Если x<0, то r>d и такая точка на параболе не лежит.

Из (7) имеет:

(8) – уравнение параболы.

Приведем его к более удобному виду, возведя обе части в квадрат

(9)-уравнение параболы.

Уравнение (9) называется каноническим уравнением параболы.

Исследуем параболу по уравнению (9). Т.к. (9) содержит y в четной степени, то парабола симметрична относительно ОХ, поэтому достаточно рассмотреть ее част., лежащую в верхней полуплоскости. Для этой части y≥0.

(10)

Отсюда следует, что:

1.Если x<0, то под корнем отрицательное выражение, следовательно, левее оси OY нет ни одной точки параболы (10).

2.Если x=0, то y=0 и начало координат лежит на параболе и является ее самой левой точкой.

3. При возрастании x, возрастает y, причем, если x→∞, то y может →∞.

Т.о. производя симметрическое отражение в рассматриваемой части относительно оси OX, получим всю параболу.

Точка О называется вершиной параболы, а ось симметрии-осью параболы. Число p выражает расстояние от F до директрисы и характеризует ширину области, ограниченной параболой.

Парабола в уравнении которой y2= -- 2px, p>0 располагается слева.

Вершина этой параболы совпадает с началом координат и осью симметрии является ось ОХ- Уравнение параболы.

Вопрос 18 Метод Гаусса.

Рассмотрим решение системы m-линейных уравнений с n-переменными в общем виде.

(1)

Метод Гаусса-метод последовательного исключения переменных заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого или треугольного вида, из которой последовательно, начиная с последних (по номеру) переменных , находятся все остальные переменные.

Предположим, что в системе (1) коэффициент при переменной x1 в первом уравнении a11≠0 (если это не так, то этого можно добиться перестановкой уравнений местами).

Шаг 1. Умножая первое уравнение на числа -a21/a11, -a31/a11,…,-am1/a11 и прибавляя полученные уравнения соответственно ко второму, третьему,…,m-му уравнению системы (1), исключим переменную x1 из всех последующих уравнений, начиная со второго. Получим:

(2)

Где буквами с верхним индексом (1) обозначены новые коэффициенты, полученные после первого шага.

Шаг 2.Преположим, что a22(1)≠0. Умножая второе уравнения на числа –a32(1)/a22(1), --a42(1)/a22(1),…,-- am2(1)/a22(1) и прибавляя полученные уравнения соответственно к третьему, четвертому,.., m-му уравнению системы (2), исключим переменную x2 из всех последующих уравнений, начиная с третьего.

Продолжая процесс последовательного исключения переменных x3,x4,…,xr-1,после (r-1)-го шага получим систему:

a11x1+a12x2+…+a1rxr+…+a1nxn=b1

a22(1)x2+…+ a2r(1)xr+…+a2n(1)xn=b2(1)… (3)

ar(r-1)+…+arn(r-1)xn=br(r-1)

0=br+1(r-1)

0=bn(r-1)

Число ноль а последних m-r уравнениях означает, что их левые части имеют вид O*x1+O*x2+…+O* xm . Если хотя бы одно из чисел br+1,…,bm(r-1) не равно нулю, то соответствующее равенство противоречиво, и система (1) несовместима.

Т.о., для любой совместной системы числа br+1(r-1),…,bm(r-1) В системе (3) равны нулю. В этом случае последние m-r уравнений в системе (3) являются тождествами и их можно не принимать во внимание при решении системы (1). Очевидно, что после отбрасывания «…» уравнений возможны два случая: а)число уравнений системы (3) равно числу переменных, т.е. r=n. В этом случае, система (3) имеет треугольный вид; б)r<n, в этом случае система (3 ) имеет ступенчатый вид.

Переход от системы (1) к равносильной системе (3) называется прямым ходом метода Гаусса, а нахождение переменных из системы (3)-обратным ходом.

Преобразования Гаусса удобно проводить, осуществляя преобразованная не с самими уравнениями, а с матрицей их коэффициентов. Для этого рассматривают матрицу:

называемую расширенной матрицей системы (1) , т.к. в нее дополнительно включен столбец из свободных членов.

Запрос о разрешимости системы (1) в общем виде рассматривается в ……

Теорема Кронекера – Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

Для совместных систем линейных уравнений верны следующие теоремы:

1.Если ранг матрицы совместной системы равен числу переменных, т.е r=n, то система (1) имеет единственное решение.

2.Если ранг матрицы совместной системы меньше числа переменных, т.е r<n, то система (1) неопределенная и имеет бесконечное множество решений.

2 вариант. Метод Гаусса (или метод последовательного исключения неизвестных) применим для решения систем линейных уравнений, в которых число неизвестных может быть либо равно числу уравнений, либо отлично от него.

Система т линейных уравнений с п неизвестными имеет вид:

x1 , x2, …, xn – неизвестные.

ai j - коэффициенты при неизвестных.

bi - свободные члены (или правые части)

Система линейных уравнений называется совместной, если она имеет решение, и несовместной, если она не имеет решения.

Совместная система называется определенной, если она имеет единственное решение и неопределенной, если она имеет бесчисленное множество решений.

Две совместные системы называются равносильными, если они имеют одно и то же множество решений.

К элементарным преобразованиям системы отнесем следующее:

  1. перемена местами двух любых уравнений;

  2. умножение обеих частей любого из уравнений на произвольное число, отличное от нуля;

  3. прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число.

Элементарные преобразования переводят систему уравнений в равносильную ей.

Элементарные преобразования системы используются в методе Гаусса.

Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с тремя неизвестными в случае, когда существует единственное решение:

Дана система:

( 1 )

1-ый шаг метода Гаусса.

На первом шаге исключим неизвестное х1 из всех уравнений системы (1), кроме первого. Пусть коэффициент . Назовем его ведущим элементом. Разделим первое уравнение системы (1) на а11. Получим уравнение:

( 2 )

где

Исключим х1 из второго и третьего уравнений системы (1). Для этого вычтем из них уравнение (2), умноженное на коэффициент при х1 (соответственно а21 и а31).

Система примет вид:

( 3 )

Верхний индекс (1) указывает, что речь идет о коэффициентах первой преобразованной системы.

2-ой шаг метода Гаусса.

На втором шаге исключим неизвестное х2 из третьего уравнения системы (3). Пусть коэффициент . Выберем его за ведущий элемент и разделим на него второе уравнение системы (3), получим уравнение:

( 4 )

где

Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на Получим уравнение:

Предполагая, что находим

В результате преобразований система приняла вид:

(5)

Система вида (5) называется треугольной.

Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2) называют прямым ходом метода Гаусса.

Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса.

Для этого найденное значение х3 подставляют во второе уравнение системы (5) и находят х2. Затем х2 и х3 подставляют в первое уравнение и находят х1.

В общем случае для системы т линейных уравнений с п неизвестными проводятся аналогичные преобразования. На каждом шаге исключается одно из неизвестных из всех уравнений, расположенных ниже ведущего уравнения.

Отсюда другое называние метода Гаусса – метод последовательного исключения неизвестных.

Если в ходе преобразований системы получается противоречивое уравнение вида 0 = b, где b  0, то это означает, что система несовместна и решений не имеет.

В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система т линейных уравнений с п неизвестными будет приведена или к треугольному или к ступенчатому виду.

Треугольная система имеет вид:

Такая система имеет единственное решение, которое находится в результате проведения обратного хода метода гаусса.

Ступенчатая система имеет вид:

Такая система имеет бесчисленное множество решений. Чтобы найти эти решения, во всех уравнениях системы члены с неизвестными хk+1, … , xk переносят в правую часть. Эти неизвестные называются свободными и придают им произвольные значения. Из полученной треугольной системы находим х1, … , xk, которые будут выражаться через свободные неизвестные. Подробнее об этом можно узнать в рекомендуемой литературе.

Рассмотренный метод Гаусса легко программируется на ЭВМ и является более экономичным (по числу действий), чем другие методы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]