Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тезисы лекции.docx
Скачиваний:
95
Добавлен:
09.11.2018
Размер:
220.08 Кб
Скачать

1.3 Двоичная, восьмеричная, шестнадцатеричная системы счисления

 Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. В ЭВМ используют двоичную систему потому, что она имеет ряд преимуществ перед другими:

  • для ее реализации используются технические элементы с двумя возможными состояниями (есть ток - нет тока, намагничен – ненамагничен);

  • представление информации посредством только двух состояний надежно и помехоустойчиво;

  • возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

  • двоичная арифметика проще десятичной (двоичные таблицы сложения и умножения предельно просты).

     Арифметические действия, выполняемые в двоичной системе, подчиняются тем же правилам, что и в десятичной системе. Только в двоичной системе счисления перенос единиц в старший разряд возникает чаще, чем в десятичной. Вот как выглядит таблица сложения в двоичной системе:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Таблица умножения для двоичных чисел еще проще:

0 * 0 = 0

1 * 0 = 0

0 * 1 = 0

1 * 1 = 1

    

Но запись числа в двоичной системе длиннее записи того же числа в десятичной системе примерно в 3,3 раза.     Для облегчения восприятия двоичного числа решили разбивать его на группы разрядов, например, по три или четыре разряда. Эта идея оказалась очень удачной, так как последовательность из трех бит имеет 8 комбинаций, а последовательность из 4 бит - 16. Числа 8 и 16 являются степенями двойки, поэтому легко находить соответствие с двоичными числами. Для кодировки трех битов требуется восемь цифр, поэтому взяли цифры от 0 до 7 десятичной системы.

Для кодировки же четырех битов необходимо шестнадцать знаков; для этого взяли 10 цифр десятичной системы и 6 букв латинского алфавита: A, B, C, D, E, F. Полученные системы, имеющие основания 8 и 16, назвали соответственно восьмеричной и шестнадцатеричной.

   В восьмеричной (octal) системе счисления используются восемь различных цифр 0, 1, 2, 3, 4, 5, 6, 7. Основание системы - 8.     В шестнадцатеричной (hexadecimal) системе счисления применяется десять различных цифр и шесть первых букв латинского алфавита.

  

Таблица 1.6 Соответствие чисел в различных системах счисления

Десятичная

Шестнадцатеричная

Восьмеричная

Двоичная

0

0

0

0

1

1

1

1

2

2

2

10

3

3

3

11

4

4

4

100

5

5

5

101

6

6

6

110

7

7

7

111

8

8

10

1000

9

9

11

1001

10

A

12

1010

11

B

13

1011

12

C

14

1100

13

D

15

1101

14

E

16

1110

15

F

17

1111