Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
posobie.docx
Скачиваний:
12
Добавлен:
09.11.2018
Размер:
468.48 Кб
Скачать

§ 1. Проекция вектора на ось и ее свойства.

Ось - это прямая, на которой:

а) задан орт (т.е. указано направление и выбран масштаб),

б) отмечено начало отсчета (точка О).

1

1

1

1

Пусть точка A1 - проекция точки A на ось , B1 - проекция точки B на ось (основания перпендикуляров, опущенных соответственно из точек A и B на ось).

Компонентой вектора вдоль оси называется вектор , где A1 - проекция точки

A на ось , B1 - проекция точки B на ось .

Проекцией вектора на ось называется число, равное , взятому со знаком «+», если компонента одинаково направлена с ортом и взятому со знаком «-», если компонента противоположно направлена с ортом :

=

Из этого определения следует равенство:

Теорема. Пусть = , - угол между вектором и осью . Тогда

1. + ) = +

2. = λ

3. = 0

§ 2. Скалярное произведение векторов и его свойства.

Скалярным произведением векторов и называется число, равное произведению модулей этих векторов на косинус угла между ними. Обозначение: .

= cos

Геометрический смысл скалярного произведения:

= =

= , =

Если - орт некоторой оси , то =

Проекция вектора на ось равна скалярному произведению этого вектора на орт этой оси.

1. = (коммутативность)

2. (λ) = λ() (ассоциативность относительно умножения на число)

3. (+) = + (дистрибутивность)

4. = (скалярный квадрат)

5. = 0 (условие ортогональности векторов)

6. > 0  - острый угол; < 0  - тупой угол

Пример.

Найти модуль вектора , если известно:

= 2 - + , = 2 , = 3, = 4, = , = , = .

= = (2 - + )(2 - + ) = 4 - 2 + 2 - 2 + - + 2 - + =

= 4 - 4 + 4 -2 + + = 422 - 423 + 4240 - 234 + 33 + 44 =

= 16 + 12 + 0 - 12 + 9 + 16 = 53 - 12 = .

Пример.

Найти длины его диагоналей d1 и d2 параллелограмма, построенного на векторах и , если

= - 3, = 2 + , = 2, = 3, = .

d1

d2

d1 =, d2 =; = 3 - 2, = - - 4;

d12 = (3 - 2)() = 9 - 12 + 4 = 922 - 12230,5 + 433 = 36  d1 = 6.

d22 = (- - 4)(- ) = + 8 + 16 = 22 + 8230,5 + 1633 = 172  d2 = .

Теорема косинусов.

В произвольном треугольнике квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

a2 = b2 + c2 - 2bc cos A, b2 = a2 + c2 - 2ac cos B, c2 = a2 + b2 - 2ab cos C.

Доказательство.

= - , + = , + =

a = =, b = =, c = =

a2 = 2 = = ( - )( - ) = - 2 + =

= 2 - 2 cos A + 2 = b2 + c2 - 2bc cos A.

Аналогично выводятся остальные формулы.

Следствием теоремы косинусов является теорема Пифагора (если C = 90, то cos C = 0

и c2 = a2 + b2).

Теорема Пифагора.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]