
- •Квантовая физика
- •Тема 3.1. Квантовые законы движения микрообъектов
- •§ 3.1.1. Корпускулярно-волновой дуализм
- •Основные связи корпускулярности и волны
- •§ 3.1.3. Соотношение неопределенностей, его физическая и методологическая интерпретация
- •§ 3.1.4. Волновая функция и ее статистический смысл
- •Величина
- •§ 3.1.5. Уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. Уравнение Шрёдингера для стационарных состояний
- •§ 3.1.6. Частица в одномерной прямоугольной «потенциальной яме»
- •Общее решение дифференциального уравнения (3):
- •§ 3.1.7. Прохождение частицы сквозь потенциальный барьер.
- •3.2. Физика атомов и молекул § 3.2.1. Атом водорода в квантовой механике
- •§ 3.2.2. Спин электрона. Спиновое квантовое число
- •§ 3.2.3. Принцип Паули. Распределение электронов в атоме
- •§ 3.2.4. Периодическая система Менделеева
- •§ 3.2.5. Спектры излучения атомов
- •§ 3.2.6. Молекулы: химические связи, понятие
- •§ 3.2.7. Поглощение, спонтанное и вынужденное излучение
- •§ 3.2.8. Оптические квантовые генераторы (лазеры)
- •3.3. Электропроводимость полупроводников и металлов
- •§ 3.3.1. Понятие о квантовой статистике Бозе-Эйнштейна
- •§ 3.3.1. Вырожденный электронный газ в металле.
- •§ 3.3.2. Выводы квантовой теории электропроводности
- •§ 3.3.3. Понятие о зонной теории твердых тел
- •§ 3.3.4. Металлы, диэлектрики и полупроводники
- •§ 3.3.5. Собственная проводимость полупроводников
- •§ 3.3.6. Примесная проводимость полупроводников
- •3.3.7. Контакт двух металлов по зонной теории
- •3.3.8. Контакт электронного и дырочного полупроводников
- •3.3.9. Полупроводниковые диоды и триоды
- •Тема 3.4. Квантовые свойства излучения и их
- •§ 3.4.1. Тепловое излучение и его характеристики
- •§ 3.4.2. Закон Кирхгофа
- •§ 3.4.3. Законы Стефана — Больцмана и смешения Вина
- •§ 3.4.4. Виды фотоэлектрического эффекта.
- •§ 3.4.5. Уравнение Эйнштейна для внешнего фотоэффекта
- •§ 3.4.6. Фотон и его характеристики
- •§ 3.4.7. Эффект Комптона
- •Тема 3.5. Атомное ядро и ядерные силы
- •§ 3.5.1. Состав атомного ядра и его характеристики
- •§ 3.5.2. Дефект массы и энергия связи ядра
- •§ 3.5.4. Ядерные силы
- •§ 3.5.5. Радиоактивность
- •§ 3.5.6. Закон радиоактивного распада.
- •§ 3.5.9. Ядерные реакции
- •§ 3.5.12. Реакции деления ядра и цепные реакции деления
- •§ 3.5.13. Понятие о ядерной энергетике
- •§ 3.5.14. Реакция синтеза атомных ядер
3.3.9. Полупроводниковые диоды и триоды
(транзисторы)
В качестве примера рассмотрим точечный германиевый диод (рис. 31), в котором тонкая вольфрамовая проволока 1 прижимается к п-германию 2 острием, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия А1 в Gе и образуется слой германия, обогащенный алюминием и обладающий р-проводимосгыо. На границе этого сдоя образуется р-п-переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качеств детекторов ( выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.
Рис. 31
Принципиальная схема плоскостного меднозакисного (купроксного) выпрямителя дана на рис. 32. На медную пластину с помощью химической обработки наращивается слой закиси меди Cu2O, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Cu2O, прилегающая к Cu и обогащенная ею, обладает электронной проводимостью, а часть слоя Cu2O, прилегающая к Аg и обогащенная (в процессе изготовления выпрямителя) кислородом, - дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Cu2O к Cu (р→п).
Рис. 32
Технология изготовления германиевого плоскостного диода описана в предыдущем параграфе (см. рис. 27). Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают целым рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры. высокие к. п. д. и срок службы, постоянная готовность к работе и т. д ), но они очень чувствительны к температуре, поэтому интервал их рабочих температур ограничен (от – 70 до + 120°С). р-п Персходы' обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов (первый транзистор создан в 1949 г. американскими физиками Д. Бардином, У. Браттейном и У. Шокли; Нобелевская премия 1956 г.).
Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные. Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода .лежит в пределах 50 – 80 °С). Плоскостные триоды являются более мощными. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью.
Для примера рассмотрим принцип работы плоскостного триода р-п-р, т. е. триода на основе п-полупроводника (рис. 33). Рабочие «элект роды» триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов – металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой н коллектором – постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение подается на входное сопротивление Rвх, а усиленное – снимается с выходного сопротивления Rвых.
Рис. 33
Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их «впрыскиванием» – инжекцией – в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), и изменяют ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.
Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении переменное напряжение. Величина усиления зависит от свойств р-п-переходов, нагрузочных сопротивлений и напряжения батареи Бк. Обычно Rвых >> Rвх , поэтому Uвых значительно превышает входное напряжение Uвх (усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в Rвых, может быть больше, чем расходуемая в цепи эмиттера, то транзистор дает и усиление мощности. Эта усиленная мощность появляется за счет источника тока, включенного в цепь коллектора.
Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряжением на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.
Принцип работы транзистора п-р-п-типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, высокие к. п. д. и срок службы, отсутствие накаливаемого катода (поэтому потребление меньшей мощности), отсутствие необходимости в вакууме и т. д.) транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.